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Abstract 

This report provides initial results on selected key enablers for 6G radio design, developed within 
Hexa-X-II work package 4: “Radio Evolution and Innovation”. The report begins with an overview of 
holistic radio design and corresponding enablers. Subsequent technical studies cover a range of topics 
in channel modelling, radio architecture and deployment for communication and sensing, model and 
data-driven transmission schemes and signal processing algorithms, spectrum access, and radio 
trustworthiness. Evaluation results are obtained through simulation frameworks and proof-of-concept 
platforms. This analysis provides inputs for the second iteration towards the end-to-end 6G system 
design in the Hexa-X-II project. 
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Executive Summary 
This report is the second public deliverable (D4.3) of work package 4 (WP4) - “Radio Evolution and 
Innovation”. It provides an updated perspective on selected radio design enablers introduced in the first public 
deliverable D4.2 [HEX223-D42] along with preliminary results based on simulation and proof-of-concepts 
(PoCs) evaluation. The report contributes towards the end-to-end 6G system design in the Hexa-X-II project.  

The report begins with an overview of the concept holistic radio design process, aimed at fulfilling emerging   
communication and sensing requirements, taking into account regulatory aspects and value consideration in 
sustainability, trustworthiness, and inclusiveness. These considerations pose constrains on material and energy 
usage and introduce new value-based requirements. The radio design is supported by various technical enablers 
across different stages. Some enablers address extreme requirements, such as exploring new spectrum, to 
enable high data rate communication and precise sensing. Various multiple-input multiple-output (MIMO) 
techniques assisted by reconfigurable intelligent surfaces (RIS), including distributed MIMO (D-MIMO), 
massive MIMO (mMIMO), and multiuser MIMO (MU-MIMO) have the potential to improve coverage, 
spectral efficiency, and energy efficiency. Implementing these technologies requires new hardware 
components and leads to a new propagation behaviour that needs to be understood through modelling tools.  
Other enablers focus on efficient resource utilization, such as joint communication and sensing (JCAS) for 
sharing network infrastructure and devices, radio resources, and signals to obtain sensing and localization 
information. Flexible spectrum access and sharing mechanisms enable efficient utilization of scarce spectrum 
resources. Moreover, a set of enablers aim to enhance key value indicators (KVIs), including mechanisms to 
improve security, extend connectivity, and reduce energy consumption.  Furthermore, advanced computational 
AI/ML tools are exploited in the design and operation to provide efficient solutions. Additionally, simulation 
and prototyping platforms are crucial for validating radio design prior to commercial deployment. The report 
then delves into the evaluation of various enablers, highlighting preliminary evaluation outcomes.  

The report explores channel models for the sub-THz and THz bands, and modelling aspects for RIS and JCAS. 
It presents extensions of existing standard channel models, including adjustments for sub-THz parameters, 
near-field effects, and the reflection coefficient of various materials at the sub-THz band. Additionally, it 
examines the impacts of THz frequency path loss on coverage, as well as signal modelling in RIS environments 
and JCAS-related channel features essential for sensing. 

The report outlines various architecture and transmission schemes. For D-MIMO, it introduces a clustering 
method to optimize the worst-case spectral efficiency by maintaining relatively similar performance for all 
users on average. It presents a distributed beamforming method incorporating over-the-air (OTA) signalling 
that improves average sum-rate performance in both unicasting and multicasting scenarios compared to local 
and centralized methods. It highlights a coherent joint transmission (CJT) strategy using analogue fronthaul 
(FH) links combined with centralized processing. For MU-MIMO, the performance of rotary uniform linear 
array (ULAs) is investigated, showing improvement over static ULAs. A flexible effective antenna (EA) is 
proposed to reduce complexity by reducing channel matrix dimension. For mMIMO, the report discusses 
leveraging a sub-6 GHz macro network to support sub-THz signals with ML-assisted channel state information 
(CSI). One-bit analogue-to-digital converters (ADCs) are considered in multi-cell setup for low-complexity 
implementation, showing significant sum-rate improvements over traditional methods such as exhaustive 
single-UE data detection with zero forcing (ZF)/minimum mean squared error (MMSE) receivers. It compares 
performance of one-bit digital-to-analogue convertors (DACs) against full-resolution DACs noting similar 
performance with lower complexity and power consumption. Other topics focus on the analysis of sub-THz 
mMIMO in various deployment and coded caching. The report emphasizes RIS technology for enhancing D-
MIMO and integrated access and backhaul (IAB) transmissions, analysing SINR and energy efficiency, 
coverage enhancements, and the challenges of channel estimation under mobility. Additionally, an innovative 
RIS reflecting modulation is proposed for low-rate data transmission in RIS-assisted systems. 

The report delves into the development of extended and novel waveform and modulation schemes, specifically 
tailored for (sub-)THz communications, which are important assets to meet 6G requirements on spectral and 
energy efficiency. These include an analysis of standardized waveforms and their numerology in sub-THz 
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taking hardware models into account, and the design of 1-bit quantized zero crossing modulation (ZXM) and 
polar hardware-friendly constellations. Additionally, it introduces waveform and modulation enhancement 
approaches, such as adaptive multicarrier modulation scheme resistant to Doppler shifts and out-of-band 
emissions. It presents a new matrix design for low-density parity check (LDPC) codes, and an optimized 
delayed bit interleaved coded modulation (DBICM). 

The report explores the convergence of wireless technology evolution and AI/ML tools, aiming to meet the 
increasing demands posed by 6G networks. It presents a systematic exploration of AI-driven solutions across 
four pivotal aspects of radio interface design: modulation and coding, CSI acquisition and compression, MIMO 
transmissions, and compensation for hardware impairments. The application of AI to waveform modulation 
and coding not only optimizes established techniques but also introduces novel signal design approaches, 
promising significant enhancements in spectral efficiency and reliability. The report further details 
advancements in AI-based CSI acquisition, highlighting the role of intelligent compression and prediction 
techniques in minimizing overhead while maximizing spectral utilization. Additionally, AI-enhanced MIMO 
transmissions presents innovative solutions for specific challenges, such as imperfect or limited CSI, power 
consumption optimization, and pilot assignment. Furthermore, it highlights the potential of AI to mitigate 
hardware impairments, with a particular focus on power amplifier non-linearities. 

The report provides assessment of JCAS deployment and resource optimization. It examines the deployment 
of emerging 6G technologies, such as non-terrestrial networks (NTN) and RIS, for localization purposes, 
showing that positioning accuracy depends on the satellite position relative to RIS orientation, and is bounded 
by the weak RIS path. Sensing fusion is studied using random finite set theory for the integration of monostatic 
and bistatic deployment, and relies on non-coherent fusion methods within a central processing unit in bistatic 
deployment. The impact of cyclic prefix (CP) duration on sensing distance in OFDM-based bistatic sensing 
systems is investigated, showing the dependency of sensing distance on angles of arrival, and that increasing 
the CP duration increases the maximum sensing distance.  Other study explores enhancing communication and 
positioning performance through the optimization of beamformers at base station (BS), user equipment (UE), 
and RIS, while utilizing tracking estimates of the UE position and orientation. It illustrates that various 
beamforming strategies are needed to tackle different uncertainty levels about the UE's position and orientation. 
Lastly, it introduces a protocol to facilitate bistatic sensing between UEs while exploiting network assistance. 

Flexible spectrum access solutions are detailed in the report, covering technical enablers for spectrum sharing 
and low-latency spectrum access. To facilitate a smooth transition from 5G to 6G, the report presents 
derivations of the requirements for multi-radio access technology (RAT) spectrum sharing. It particularly 
focuses on spectrum sharing between terrestrial networks and satellite services in the S and Ku bands, refining 
model assumptions to extend sharing opportunities, and proposing optimization for handover within NTN. 
Methods to access higher frequency ranges up to sub-THz with a low access latency are derived, alongside 
probabilistic random-access methods to augment scheduled access when interference created to others is 
acceptable. Additionally, the report introduces a method to predict interference based on a transformer model. 

Trustworthiness is one of the three core values targeted by Hexa-X-II. Different aspects of a trustworthy 6G 
radio design are explored in this report. These include, solutions for exploiting the physical properties of 
wireless channel and device hardware to ensure security against eavesdropping attack; investigating methods 
to assess the impact of jamming against and localize a jammer; and analysing the security and privacy analysis 
of a general cellular JCAS system, including the UE related aspects.  

The report highlights various PoCs and simulation tools for the evaluation of 6G technologies. Key areas 
include the development of a link-level simulation tool for evaluation of various schemes like D-MIMO and 
beamforming. It introduces an AI-native air interface PoC, demonstrating the practical applications of ML in 
enhancing CSI feedback and facilitating pilotless OFDM transmissions. It provides an overview of flexible 
modulation and transceiver design. JCAS is explored in a PoC, demonstrating the potential of using the same 
hardware for both communication and sensing. Furthermore, the report investigates crucial aspects of power 
consumption in JCAS systems, providing insights into power efficiency strategies. An EMF assessment 
framework is developed for evaluating electromagnetic field (EMF) exposure from advanced MIMO systems. 
Initial results for MIMO deployments demonstrate that EMF exposure levels are far below the international 
and EU recommended EMF limits. Lastly, comprehensive channel measurement data and modelling tools are 
presented, offering valuable resources for further research and development in 6G technology.  
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SAR Specific Absorption Rate 

SB Sub-Band 

SC-FDE Single Carrier Frequency Domain Equalization 

SCS Subcarrier Spacing 

SDR Software Defined Radio 

SE Spectral Efficiency 

SER Symbol Error Rate 

SF Shadow Fading 

SFN Single Frequency Network 

SIB System Information Block 

SINDR Signal to Interference, Noise and Distortion Ratio 

SINR Signal to Interference and Noise Ratio 

SISO Single-input and Single-output 

SL Supervised Learning 

SLNR Signal to Leakage and Noise Ratio 

SNR Signal-to-Noise Ratio 

SRM Separately Mapped Reflection Modulation 

SSB Synchronization Signal Block 

SSL Semi-Supervised Learning 

SSL Semi-supervised Learning 

STFBC Space-Time-Frequency Block Code 

STU Single Transmission Unit 

SU-MIMO Single-User MIMO 

SVD Singular Value Decomposition 

TA Timing Advance 

TDD Time-Division Duplex 
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TN Terrestrial Network 

TRX Transceiver 

TX Transmit 

TXRU Transmit Radio Unit 

UAV Unmanned Aerial Vehicle 

UC Use Case 

UE User Equipment 

UL Uplink 

ULA Uniform Linear Array 

URLLC Ultra-Reliable Low-Latency Communications 

VNA Vector Network Analyzer 

WP4 Work Package 4 

XR Extended Reality 

ZF Zero Forcing 

ZSA Zenith Angle Spread of Arrival 

ZSD Zenith Angle Spread of Departure 

ZXM Zero-Crossing Modulation 
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1 Introduction  
Hexa-X-II is the 6G Flagship project under the European Union Horizon Europe research and innovation 
program, Smart Network and Services Joint Undertaking (SNS JU), for building a system blueprint of 
sustainable, inclusive, and trustworthy 6G platform. This document is the third deliverable (D4.3) of work 
package 4 (WP4) - “Radio Evolution and Innovation”. The work in WP4 focuses on the development of radio 
access solutions that meet the requirements of 6G services for communication and sensing. The research and 
innovation within WP4 focus on the following key aspects: 

• Sustainable, trustworthy and inclusive holistic radio design 
• Towards THz communications 
• Joint communications and sensing  
• Intelligent radio air interface design 
• Flexible spectrum access solutions 

The second deliverable of WP4 (D4.2) [HEX223-D42] analyses 6G use cases and defines 6G radios scenarios 
and, along with corresponding key performance indicators (KPIs) and key value indicators (KVIs) 
requirements for communications and sensing. It also presents and describes key 6G radio design enablers 
which guide the work in WP4. 

1.1 Objective of the document 
This report presents the initial analysis results of selected radio enablers described in (D4.2) [HEX223-D42]. 
These enablers cover various aspects of holistic radio design at both the physical layer (PHY) and medium 
access layer (MAC), including new spectrum and access solutions, efficient transmission schemes, architecture 
and deployment approaches for both communication and sensing. It also discusses radio link modelling and 
simulation tools, advanced signal processing and algorithms based on artificial intelligence (AI) and machine 
learning (ML), as well as proof-of-concept (PoC) and prototyping platforms. In addition, solutions are 
considered for enhancing KVI-related to sustainability, inclusiveness, and trustworthiness. These include 
optimization methods for improving energy efficiency, integration of terrestrial network (TN) and non-
terrestrial network (NTN), physical layer security, and techniques to overcome jamming. The report 
contributes to the Hexa-X-II WP4 objectives as outlined in the following: 

WPO 4.1: Develop an inclusive, trustworthy, and flexible radio design tailored to meet given 6G KPIs 
and KVI requirements through analysis and integration of HW architectures, transmission schemes and 
security solutions. 

Sustainable, trustworthy and inclusive holistic radio design is discussed in D4.2, which defines radio scenarios 
and determines KPIs and KVIs requirements for communications and sensing services based on initial analysis 
of use cases. Moreover, D4.2 presents the impact of these use cases and scenarios on various components of 
the radio design. Additionally, D4.2 describes enablers for flexible, inclusive, sustainable and trustworthy 6G 
radio design.  

In D4.3, Chapter2 introduces a holistic radio design framework and categorizes various enablers into groups 
to facilitate the integration of the radio enablers in the end-to-end (E2E) 6G system. The radio scenarios and 
use cases are revised and updated based on D2.1 [HEX223-D12]. Chapter 9 provides initial results of radio 
enablers focusing on trustworthiness, including secret key generation based on PHY security, analysing the 
impact of jamming on communication, and evaluating of sensing security. Moreover, Section 8.3 focuses on 
inclusive radio interface via TN/NTN enhancement, particularly presenting initial results on handover. In 
addition, Section 10.6 presents a simulation tool for electromagnetic field (EMF) assessment, and provides 
examples of various deployment scenarios.  

WPO 4.2: Provide a suitable channel model and develop novel broadband air-interface techniques to 
enable energy-efficient operations in the (sub-)THz bands, including new energy-efficient 
waveforms/modulations and advanced massive MIMO techniques. 

While D4.2 provides descriptions of the corresponding enablers for transmissions in the sub-THz range, D4.3 
introduces their initial numerical results. Section 3.1 presents a channel modelling framework, Section 3.2 
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introduces a methodology for modelling near-filed components, Section 3.3 provides initial analysis of THz 
coverage, and Section 3.4 presents results on wave interaction with material covering various frequency ranges 
(5-40 GHz, 110-170 GHz, 170-260 GHz). 

Initial results on sub-THz waveforms are presented in Section 5.1, for 5G new radio (5G NR) compatible 
waveforms, and for zero-crossing modulation (ZXM). A link modelling simulation framework is introduced 
in Section 10.1 for the evaluation of various channels, including sub-THz. Section 4.2.2 presents initial results 
on 1-bit analogue-to-digital (ADC) in a fully digital massive multiple-input multiple-output (mMIMO), which 
is particularly considered as a solution for sub-THz radio. Additionally, Section 4.1.4 provides results on 
improving beam search in sub-THz distributed MIMO (D-MIMO) scenario assisted by sub-6 GHz macro 
network. 

WPO 4.3: Provide solutions that enable flexible, cross-functional joint communication and sensing over 
a unified radio infrastructure, including new architectures, signals, methods, and protocols. 

Joint communication and sensing (JCAS) enablers are described in D4.2 considering deployment, waveforms 
and resource allocation, as well as security and privacy aspects. D4.3 provides initial evaluation results of 
several topics, while others are still under investigation. In particular, Section 7.1 focuses on deployments, 
including NTN and reconfigurable intelligent surfaces (RIS)-aided localization, integration of mmWave 
monostatic and bistatic sensing, and multistatic sensing. Section 7.2 is dedicated to JCAS resource 
optimization considering MIMO and OFDM. Section 6.1.2 introduces results on AI-based JCAS waveform 
and proceeding performance under hardware impairments. Additionally, security and privacy aspect of JCAS 
are presented in the context of worthiness in Section 9.4 and Section 9.5. An initial PoC on bistatic JCAS is 
presented in Section 10.4. Additionally, Section 3.6 delves into JCAS channel modelling feature requirements.  

WPO 4.4: Design intelligent radio air interface to improve one or a combination of KPIs including 
spectral efficiency, energy efficiency, coverage, or lower cost at FR1 and FR2 spectrum. 

D4.2 presents various air interface methods for improving communication in frequency rang 1 (FR1) and FR2. 
These include AI-driven air interface design, D-MIMO transmissions, and RIS-assisted transmission schemes. 
Initial evaluation results are introduced in D4.3. In Section 4.1, various D-MIMO architectures and 
beamforming designs are evaluated in terms of throughput, spectral efficiency, and coverage. Section 4.2 
focuses on massive and multiuser MIMO architectures for enhancing energy efficiency. Results on assisted 
RIS transmission are presented in Section 4.3 for channel estimation, control procedures, and employing RIS 
reflecting patterns to convey information. Moreover, RIS signal modelling is discussed in Section 3.5, with 
results on enhancing the link budget.   Chapter 6 focuses on AI/ML-based solutions for learning waveforms, 
channel state information (CSI) acquisition and feedback, MIMO optimization, and for hardware impairment 
compensation. Initial results on AI-native air interface PoC are presented in Section 10.3.  

WPO 4.5: Develop spectrum sharing and medium access mechanisms for enabling an efficient transition 
to 6G (coexistence) and low-latency service access. 

D4.2 describes solutions for flexible spectrum access solutions, including enablers for spectrum sharing and 
for low-latency spectrum access. D4.3 introduces improvements to the assumptions and models in spectrum 
sharing. Studies are proposed for the case of co-channel coexistence of international mobile 
telecommunications (IMT) and fixed satellite service (FSS) ground stations in Section 8.1.1. Section 8.1.2 
provides a study on TN-NTN spectrum sharing in the S-band (2 GHz) using stochastic geometry. Section 8.1.3 
discusses multi-radio access technology (RAT) spectrum sharing (MRSS) with 5G. Section 9.2.1 presents 
initial results on spectrum access methods for sub-THz, which can also be applied to FR 2. Section 8.2.2 
presents a probabilistic approach for risk-informed random access for local communication, considering 
criteria such as inducing extra interference to other users.  

1.2 Structure of the document 
Chapter 2 presents an overview of the holistic radio design concept and introduces group of enablers, around 
which the remaining chapters are structured. Each main section in these chapters consists of subsections 
focusing on interrelated topics.  Subsections present studies and initial results following an extended abstract 
structure; They begin by presenting the main problem, then introduce the methodology and system model, and 
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finally summarize the numerical results and their discussions. Further details are presented in the appendices 
under similar tiles.  

Chapter 3 is dedicated to channel modelling in various scenarios, including sub-THz, coverage analysis for 
THz, link modelling for RIS, and channel modelling concepts for JCAS. Chapter 4 introduces MIMO 
transmission solutions, with a particular focus on architectures and deployment scenarios for D-MIMO, 
mMIMO, and RIS-assisted transmission. Chapter 5 presents waveforms and modulations for 6G radio 
transmissions in sub-THz and other frequency ranges. Chapter 6 discusses radio air interface design leveraging 
AI/ML methods, covering techniques for waveform and constellation learning, CSI prediction and feedback, 
solutions for tackling MIMO challenges, and AI for hardware impairment compensation. Chapter 7 covers 
radio enablers for joint communications and sensing, focusing on deployment and recourse optimization. 
Chapter 8 focuses on MAC aspects for flexible spectrum sharing and coexistence, random access methods, 
and enhancement of TN/NTN integration. Chapter 9 summarizes topics and studies related to trustworthiness 
in communication and sensing. Chapter 10 is dedicated to validation, including PoC and simulation tools. The 
report is concluded in Chapter 11. 
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2 Sustainable, trustworthy and inclusive holistic radio design  
This chapter presents a brief overview of holistic radio design aspects, which are detailed in D4.2 [Chapter 2, 
HEX223-D42].  First, Section 2.1 provides an overview of the generic design process, highlighting various 
considerations. Section 2.2 describes the use cases analysis procedure and provides an update on the radio 
scenarios in relation to HEXA-X-II use cases.  A radio design framework is presented in Section 2.3, with an 
overview of various modules and groups of enablers. Section 2.4 focuses on architecture and deployment 
options in the context of functional split placement. 

2.1 Holistic radio design process overview and technical enablers 
Holistic radio design integrates comprehensive considerations, from technical specifications to societal 
impacts, ensuring that the systems developed are not only technologically advanced but also sustainable, 
trustworthy, and inclusive.  

 

Figure 2-1: Radio design process, emphasising value consideration and technical enablers of HEXA-X-II. 

As shown in Figure 2-1, the radio design process is a dynamic framework that evolves with each generation 
of technology. At its core, it takes specific use cases and their associated requirements as inputs, with the goal 
of satisfying these requirements through innovative solutions under given constrains, such as regulatory 
aspects for frequency and spectrum usage, as well as power level.  Moreover, 6G radio design in HEXA-X-II 
emphasizes key values considerations for environmental, social, and economic sustainability [HEX223-D31]. 
These constraints impose restrictions on the usage of resources for energy, material, software/hardware 
components. Therefore, innovative technologies and solutions are needed to balance performance with value-
based requirements. These include 

• New spectrum for meeting the increased demand on data rate.  This requires exploring the 
corresponding channel model, radio frequency (RF) transceiver, hardware (HW) components, and 
advanced waveform and transmission techniques. In HEXA-X-II, WP4 studies (sub)-THz 
communication (above 100 GHz) and cm-Wave (7-15 GHz).  

• Flexible topologies enable adaptable network configurations to efficiently meet varying use cases 
demands and environment, as discussed in [HEX223-D32]. WP4 investigates the impact of various 
topologies on the radio design, particularly the integration of terrestrial network (TNs) and non-
terrestrial networks (NTNs), as well as device-to-device (D2D) communication. 

• Technologies to improve the resource usage for multiple functionalities, such as joint communications 
and sensing (JCAS), which aims to leverage network infrastructure and devices for providing sensing 
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and localization information. Such information in turns can be used to improve overall 
communication. WP4 explores various approaches for JCAS deployment and resource sharing across 
different frequency ranges in Chapter 7. 

• Efficient transmission techniques to improve spectral efficiency, energy efficiency, and coverage. 
WP4 considers various multiple-input multiple-output (MIMO) techniques in Chapter 4, at different 
frequency ranges, including distribute MIMO (D-MIMO), massive MIMO (mMIMO), and multiuser 
MIMO (MU-MIMO). WP4 also investigates advanced and enhanced waveforms and modulations 
schemes in Chapter 5. 

• Advanced computational tools, such as artificial intelligence (AI) / machine learning (ML) models. 
WP4 considers AI/ML for signal processing, resource allocation, and HW impairment compensation 
in Chapter 6.  

• Mechanisms for efficient spectrum sharing to improve spectrum utilization and reduce interference 
among different radio access technologies (RATs). For instance, WP4 explores sharing solutions for 
non-terrestrial networks (NTN) spectrum, such as fixed satellite, with terrestrial networks (TN), as 
well as multi-RAT spectrum sharing (MRSS) in Chapter8. 

• Technologies to control the propagation environment, such as deploying reconfigurable intelligent 
services (RIS), which is considered in WP4 for mitigating blockage and improving coverage, as 
introduced in Section 4.3. 

• Solutions to enhance, privacy, security, and resilience, such as exploiting channel characteristics in 
physical layer (PHY) security, and sensing and localization to identify and localize jamming. Theses 
aspects are investigated in Chapter 9. 

• Energy efficient techniques, including optimization of deployment, HW, and transmission schemes, 
in addition to solution for reducing signalling overhead. WP4 emphasises energy efficiency in the 
design and operation of radio systems.  

• Novel material and HW components with minimal environmental impact in terms of reduced energy 
consumption, and improved durability and recyclability. HW related enablers are presented in 
[HEX224-D53]. 

The outputs of the design process are the technologies chosen, system architecture, and detailed mapping of 
signal flows and component interactions. Validation is executed through simulations and prototyping, ensuring 
that the system design meets its intended goals. The validation process is enabled by  

• Simulation and modelling tools to provide mathematical models for channels and HW components for 
design and evaluation. WP4 focuses on channel and link modelling for link-level simulations, which 
are presented in Chapter 3. 

• Prototyping platforms for experimental validation prior to commercialization. WP4 utilizes such 
platforms in various proof-of-concept (PoCs), as introduced in Chapter 10. 

2.2 Use cases analysis and radio scenarios   
A successful radio design begins with a precise definition of its use cases. These use cases represent diverse 
needs and scenarios in which the radio system operates, from urban high-density connectivity to remote access 
in rural areas. Over generations, use cases have evolved, with increased demands for bandwidth, low latency, 
high reliability, and massive connectivity. Defining specific radio scenarios and their requirements sets the 
foundation for a radio system design.  

In a typical process, as illustrated in Figure 2-2, a wide range of application use cases are analysed and 
categorized into families with similar service requirements. The service requirements are mapped to 
corresponding radio requirements, and a set of scenarios are derived based on extreme radio requirements. The 
grouping based on extreme requirements provides the most challenging and demanding conditions for radio 
design. This approach ensures that a radio system designed and optimized for an extreme scenario can meet 
diverse economic and social needs. A comprehensive analysis based on HEXA-X-II 6G use cases is presented 
in [Section 2.3, HEX223-D42], leading to four scenarios, each focusing on extreme requirements in one 
parameter while allowing flexibility in other parameters as flexible.  
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Figure 2-2: Framework for use cases analysis and radio scenario definition. 

These scenarios are denoted as (1) Extreme coverage, (2) Extreme data rate, (3) Extreme connection density, 
(4) Extreme low latency and high reliability. Table 2-1 provides a summary of these scenarios, including radio 
requirements and various sub-scenario parameters, with a mapping to the HEXA-X-II use case families 
presented in [HEX223-D12], and the ITU usage scenarios [ITU-M.2160].  

Table 2-1: Summary of basic radio scenarios with corresponding radio requirements. 

 Extreme coverage Extreme data rate 
Extreme 

connection 
density 

Extreme low 
latency and high 

reliability 

ITU usage 
scenario 

Ubiquitous 
connectivity 

AI and 
communication, 

Immersive 
communication 

Immersive 
communication, 

Massive 
communication 

Hyper reliable and 
low-latency 

communication, 
Integrated sensing 

and communication 
HEXA-X-II use 
case family 

Fully connected world, 
Physical awareness 

Immersive 
experience 

Digital twins 
Trusted environment Collaborative robots 

Representative 
HEXA-X-II use 
case 

Ubiquitous network, 
Network-assisted 

mobility 

Seamless immersive 
reality 

Realtime digital 
twins 

Human-centric 
services 

Cooperative mobile 
robots 

Radio devices 
Enhanced 5G (mMTC, 

eMBB) devices, 
Energy neutral devices 

Access points for 
backhaul, 

Gateway for sensors 

Reliable high data 
rate with bounded 

latency devices 

High reliability & 
low latency devices 

Environment 

Mobile indoor, 
Public indoor, 

Outdoor (urban, 
suburban, rural), 

Controlled and semi-
controlled indoor 

and outdoor 

Urban 
indoor/outdoor with 
high density of users 

High-rise 

Indoor, 
Embedded network 

Mobility Static, 
up to 300 km/h 

Static, 
up to 10 km/h, 

controlled mobility 
(velocity information 

available) 

Static, 
up to 100 km/h 

Static, 
up to 20 km/h, 

controlled mobility 
(velocity information 

available) 

Deployment 
options 

Long/short range, 
Fixed/temporary, 

Mobile infrastructure, 
TN/NTN integration 

Small cell, 
Fixed access, 

D2D, 
Sensor network with 

a gateway 

High density of cells, 
Macro cell, 
Micro cell, 
Cell-free 

Small cell, 
On premises, 
Infrastructure, 

Sensor network 
 

Frequency 

Sub-GHz, sub-6 GHz, 
7-15 GHz, 

satellite frequency 
ranges 

mmWave, sub-THz, 
mixed and 

unlicensed for local 
connections 

Sub-6 GHz, 7-15 
GHz, mmWave 

 

Private frequency, 
sub-GHz, sub-6, 
GHz, 7-15 GHz, 

mmWave, sub-THz 
for sensing 
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Peak data rate 
(PHY) < 1 Gbit/s (10-100 Gbit/s) < 10 Gbit/s < 10 Mbit/s 

Link reliability Variable Variable Variable (99.999%-
99.999 99%) 

Air interface 
latency Variable Variable Variable (0.1-10) ms 

Connection 
density Variable <106 device/km2 (106-108) device/km2 Variable 

Coverage  Availability 
(99.99%-99.999 999%) Local Variable Local coverage 

Sensing 
capabilities Variable Variable Variable Positioning accuracy 

(0.1-1) cm 

2.3 Overview of holistic radio design framework  

 

Figure 2-3: Holistic radio design framework. 

The holistic radio design approach treats the entire radio system as a whole and considers the interdependencies 
between different elements. The radio hardware and software are jointly designed to optimize the performance 
and efficiency of the system. The radio design framework shown in in Figure 2-3 illustrates the different 
modules within the radio system and their interfaces, as well as the group of enablers related to each module. 

Propagation environment: It considers physical environment effects on the signal, including obstacles, 
reflectors, atmospheric effects, etc. It is influenced by the environment, deployment type, and mobility.  

RU: The radio unit (RU) consists of RF frontend, frequency conversion, digital/analogue (D/A) conversion. It 
interacts with the propagation environment through the antennas and with the physical layer (PHY) via digital 
samples. From the PHY perspective, RU functionality can be abstracted by means of hardware and channel 
modelling. Various RF transceiver architectures can be implemented in RUs, determined by the number of RF 
chains and antennas, as well as the resolution of the digital-to-analogue converters (DACs) and analogue-to-
digital (ADCs), as illustrated in Figure 2-4. For example, fully digital MIMO architecture, Figure 2-4 (a), 
employs one chain per antenna, whereas hybrid beamforming, Figure 2-4 (b), uses analogue beamforming, 
with more antennas than RF chains. Low-resolution DAC/ADC can be used in fully digital architecture, such 
as 1-bit ADC/DAC massive MIMO, as discussed in Section 4.2.2. Additionally, there are various types of 
analogue beamforming architectures using fully or partially connected phased arrays, or switched beam 
antenna lenses [HEX224-D53]. 
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(a) Digital MIMO architecture (b) Hybrid beamforming architecture (c) RF chains 

Figure 2-4: Radio unit architecture options. 

Radio link modelling:  This is an essential aspect in radio design, providing simulation models for the channel 
and HW components. Various abstracted channels can be obtained at different levels, as follows: 

• Wireless channel: this abstracts the effects of the propagation channel and account for the impact of 
RF frontend. The characteristics of this channel depends on the frequency range, bandwidth, 
beamforming, RUs distribution, and deployment scenario. Channel modelling aims to capture the key 
characteristics and behaviours of wireless channels with respect to the radio signal [TR 38.901]. 
Details on channel modelling are presented in Chapter 3.  Modelling at this level also includes aspects 
like obtaining models for antenna coupling, power amplifier (PA), and low-noise amplifier (LNA). 
HW modelling focused on sub-THz is presented in [Chapter 2, HEX224-D53]. 

• Baseband channel: This extends the wireless channel by considering the effects of frequency 
converters, including phase noise (PN) and low-pass (LP) filtering. 

• Digital baseband channel: This incorporates, in addition to the baseband channel, the effects of DAC 
and ADC resolution, and digital frontend (DFE) processing, such as filtering and pre-distortion.  

 
Figure 2-5: Link modelling and equivalent channels. 

PHY: It encompasses a broad range of functions related to transmission, detections, channel state information 
(CSI) feedback, and sensing, as illustrated in Figure 2-6. It provides transport channels to the medium access 
control (MAC) layer and interacts with the discrete baseband channel. The PHY functions can be implemented 
using conventional model-based solutions, or employing AI/ML data-driven models, which can address 
individual functions or a combination of them. Various AI/ML solutions are presented in Chapter 6, whereas 
Chapter 5 focuses on conventional PHY methods.  
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Figure 2-6: PHY functions. 

MAC: It is responsible for spectrum access and physical resource allocation. It includes functions for flexible 
spectrum sharing, coexistence, and low-latency random access. It provides logical channels to the upper layers. 
Various MAC aspects are presented in Chapter 8. 

Upper layers: These layers consist of various radio function and protocols, such as radio link control (RLC), 
packet data convergence protocol (PDCP), and radio resource control (RRC), which operate on top of 
MAC/PHY [HEX223-D22]. 

Values focused solutions: These include operational techniques that work alongside the radio infrastructure 
and PHY/MAC, such as PHY security and anti-jamming mechanisms to improve trustworthiness, as discussed 
in Chapter 9. Other solutions include proactive resource allocation, presented in Section 8.4, and minimizing 
signaling overhead that contribute to energy efficiency and improve the user experience, as discussed in 
Section 8.3.  

2.4 Flexible radio architecture and deployment 
In radio design, multiple degrees of flexibility in terms of implementation and deployment of various functions 
can be achieved. Flexibility at PHY/MAC is typically implemented through variable waveform numerologies, 
adaptive modulation and coding, and dynamic radio resource allocation. This allows the system to adjust to 
changing conditions and requirements. In the RU, flexibility can be achieved following a software-defined 
radio (SDR) approach that enables the configuring of carrier frequencies, bandwidth, power level, the number 
of active chains, as well as controlling the radiation patterns in the case of analogue beamforming frontend.  

Different layers within the system may generate configuration commands for various modules, providing the 
ability to tailor the radio system to specific requirements and operating conditions. 

 

Figure 2-7: Radio logical functional split and configuration parameters. 

Figure 2-7 illustrates a logical functional split of MAC, PHY, and RU functions, along with their corresponding 
configuration parameters. In typical devices, these functions are often collocated to achieve higher integration 
and reduce material costs. However, in the radio access network (RAN) infrastructure, implementing various 
functional splits can offer additional flexibility, enabling a more modular approach. These splits can be 
beneficial in a range of scenarios, allowing for optimized resource usage and scalability. However, they also 
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affect infrastructure requirements, such as fronthaul capacity and signal processing design. Figure 2.5 provides 
examples of the functional splits discussed in this deliverable: 

• Centralized RAN: In this configuration, the MAC, PHY, and RU functions are collected and controlled 
at higher layer. This setup can support dual connectivity at PDCP level.  

• Distributed MAC: Here, the MAC functions are split into centralized and distributed entities Partially 
centralized MAC functions enable carrier aggregation across different frequency ranges, offering 
flexibility in managing resources.  

• Centralized MAC: In this setup, controls multiple PHY instances are centrally controlled by MAC. 
This allows, for example, carrier aggregation in the same frequency range.  

• Distributed PHY: This deployment corresponds to D-MIMO with distributed processing. It reduces 
fronthaul capacity requirements by offloading part of the PHY processing close to RUs, such as partial 
channel estimation and precoding, as discussed in Section 4.1.3. 

• Centralized PHY: This is a conventional D-MIMO setup with centralized processing, where all 
samples from RUs are collected and centrally processed, as in Section 4.1.1. Other related D-MIMO 
split options is using analogue fronthaul, as in Section 4.1.5, where the D/A converters are placed 
closer to PHY. 

     

(a) Centralized RAN (b) Distributed MAC (c) Centralized 
MAC 

(d) Distributed 
PHY 

(e) centralized 
PHY 

Figure 2-8: RAN deployment options. 

Further deployment scenarios correspond to the placement of transmitters and receiver as in JCAS deployment, 
such as bistatic, monostatic, and multistatic sensing, as discussed in Section 7.1. 
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3 Channel modelling 
In sixth-generation cellular communications, there is a growing interest in utilizing the sub-THz band and 
implementing new technologies such as the reconfigurable intelligent surfaces (RIS) and joint communication 
and sensing (JCAS). Due to the relatively unexplored nature of the sub-THz band, developing new and 
updating existing channel models, and analysing the coverage of a sub-THz cellular system must be 
considered. Additionally, channel models must be developed to account for the unique characteristics of these 
emerging technologies and ensure their effective design and evaluation across different use cases.  

The standard channel model, 3GPP TR 38.901 [38.901], presently supports frequencies only up to 100 GHz 
and does not accommodate near field conditions. These two issues are partially addressed in Section 3.1.1 and 
3.1.2, by reporting channel parameter values at the sub-THz band and proposing a simple modification on the 
per antenna pair propagation lengths. Higher bandwidths can be utilized at higher frequencies but at the cost 
of higher propagation losses. In Section 3.1.3, the coverage reduction due to the increased path loss at a higher 
frequency, assuming fixed gain isotropic antenna at both link ends, is investigated. Meanwhile, the reflection 
loss of different materials at the sub-THz band, which is particularly relevant for deterministic channel 
modelling, must be considered. Section 3.1.4 addresses the deviation of the reflection coefficient from the 
ITU-R P2040 model [ITU P.2040-3] for rough or coated surface materials. A potential solution to various 
propagation issues is the use of RIS, which can steer the incoming signal to the RIS towards the receiver, 
resulting in improved signal reception. The modelling of the received signal power in an environment with 
RIS is discussed in Section 3.2. Finally, as the current channel models are originally designed solely for 
communication, modifications to these models must be considered to support the evaluation of JCAS. Section 
3.3 presents the JCAS use cases, channel model features relevant to sensing, and their relation to current 
channel models. 

3.1 3GPP-like channel model 
Problem statement: The standardized stochastic channel model 3GPP TR 38.901 is a widely used model 
capable of reproducing plausible channel responses for various scenarios [38.901]. It can generate statistically 
consistent wideband propagation channels, including the polarimetric path gain, azimuth and zenith angles of 
arrival and departure, and path delay. This means that the probability density functions of the channel 
parameters of the generated channels of such stochastic channel model are approximately identical to those of 
the measured channels for a given scenario. To use this model, input channel parameter values derived from 
the measurements are required. The input channel parameter values, extracted from sub-THz measurements in 
indoor entrance hall and outdoor residential, are presented in this chapter. The measurements cover frequencies 
from 140 to 144 GHz in line-of-sight (LoS) and non-LoS (NLoS) conditions. In addition, these measured 
channels are compared with the generated channels using the 3GPP parameter values specified in [38.901] and 
parameter values extracted from the measurements.  

Methodology: The double-directional multipath data were first obtained from the channel measurement 
campaigns described in detail in [DH23]. The channel parameter values such as the large-scale (LSP), small-
scale, and cross-correlation parameters are then extracted from these data as listed in Tables Table A.1-1, Table 
A.1-2, and Table A.1-3 in Section A.1.1. The delay spread, angular spread, and path loss are calculated using 
[DH24, Equations (5), (6), and (2)]. The measured path loss estimates are fitted using the least-squares method 
to the floating-intercept path loss model to estimate the distance-dependent coefficient 𝛼 and the best-fit path 
loss offset 𝛽. To derive the cluster parameters, the measured multipath components (MPCs) are clustered along 
the azimuth and zenith angles of arrival and departure, and path delay using the agglomerative hierarchical 
clustering method [NHP16]. The MPCs up to 40 dB below the strongest MPC were considered in obtaining 
these channel parameter values. The channel parameter values for indoor-office and UrbanMicro-street canyon 
specified in the 3GPP [38.901] are also included in the same tables for comparison with the entrance hall and 
outdoor residential parameter values. Although the 3GPP model supports frequency only up to 100 GHz, the 
parameter values in these scenarios are obtained by substituting 𝑓! = 142 GHz in frequency-dependent model 
parameters. The channel responses, represented as discrete multipath parameters containing azimuth and zenith 
angles of departure and arrival, delay and amplitude, are generated using the modelling framework shown in 
Figure 3-1. 
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Figure 3-1: Channel Modelling Framework. 

Two sets of channel responses, (S1) using the extrapolated parameter values specified in [38.901] and (S2) 
uses the parameter values derived in this section, are generated using the channel modelling framework shown 
in Figure 3-1. The channel response is represented as discrete multipath parameters containing azimuth and 
zenith angles of departure and arrival, delay and amplitude. For each set, 300 channel responses are generated, 
with each assuming a link with the Tx placed at the origin (0,0,1.8) of the Cartesian coordinate system. The 
Rx is placed along the x-axis (𝑑, 0,1.8) where 𝑑 is randomly drawn from the same distribution of the link 
distances in measurements. Both antennas are placed at the same height, 𝑧 = 1.8 as in the measurements. The 
y-coordinate is fixed at 𝑦 = 0	and should not affect the comparison as the MPCs’ departure and arrival angles 
are normalized with respect to the reference direction given by the Tx/Rx directions seen from the Rx/Tx 
locations. Only Section 7.5 of [38.901]and the additional modelling component, large bandwidth and large 
antenna array modelling, in Section 7.6.2 of [38.901], are implemented here.  

Results: To measure the consistency of the generated channels with the measured channels, the absolute 
percent error of the parameter values between the measured and generated channels is calculated as PE =
	|(𝜇"#$,& − 𝜇"#$,')/𝜇"#$,'| ⋅ 100%. The variables 𝜇"#$,& and 𝜇"#$,' are the mean values of an LSP of the 
measured and generated channels. The LSP includes delay spread (DS), azimuth angle spread of departure 
(ASD) and arrival (ASA), zenith angle spread of departure (ZSD) and arrival (ZSA), shadow fading (SF), 
Rician K factor (K), and the path loss parameters 𝛼 and 𝛽. The percent error estimates, along with the reference 
values, are listed in Table 3-1. It can be observed that the PEs of S2 across the environments and link conditions 
are generally lower than the PEs of S1. This discrepancy can be attributed to the differences in environments 
considered in this chapter as to those considered in the 3GPP. Therefore, the parameter values found in the 
entrance hall and residential environments reported in Section A.1.1 can be utilized to create realistic channels 
that are helpful for evaluating links and systems at the sub-THz band. 

Table 3-1: Percent error between the LSP mean of the measured and generated channels. 

Parameter 

LoS NLoS 

DS 

(ns) 

ASD 

(°) 

ASA 

(°) 

ZSD 

(°) 

ZSA 

(°) 

SF 

(dB) 

K 

(dB) 

𝛼 

(dB) 

𝛽 

 

DS 

(ns) 

ASD 

(°) 

ASA 

(°) 

ZSD 

(°) 

ZSA 

(°) 

SF 

(dB) 

𝛼 

(dB) 

𝛽 

 

In
do

or
 Ref. 𝜇!"#,% 14.5 12.3 24.5 2.3 5.2 0.9 6.2 73.6 2.1 24.0 20.9 34.7 3.4 6.8 7.3 74.4 2.8 

PE (%) 
S1 37 53 43 1484 36 71 8 2 21 45 40 9 76 64 9 5 26 

S2 9 5 12 7 3 0 5 0 0 12 15 8 32 34 0 0 1 

O
ut

do
or

 Ref. 𝜇!"#,% 18.2 7.8 9.8 1.1 2.0 1.1 7.8 79.2 1.7 21.4 5.8 20.9 1.4 3.0 8.2 52.5 3.9 

PE (%) 
S1 28 25 55 591 56 73 10 3 15 57 69 51 90 72 5 27 19 

S2 32 75 54 43 35 0 8 0 1 82 54 75 37 19 0 7 6 

3.2 Channel model component for near-field condition 
Problem statement: The goal of this work is to provide a simple modification to the legacy channel modelling 
approach in 3GPP TR 38.901 [38.901]. The modification makes the model more physical and solves many 
issues related to prior prerequisites of confined array sizes, relatively small bandwidths, and link distances 

Our measured channel parameters at 142 GHz 

Coefficient generation 
• Generate initial random 

phases. 
• Calculate channel 

coefficient. 
• Apply pathloss and 

shadowing. 

OR 
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satisfying the far field condition. This work has been contributed to ETSI in document [(23)000238]. The 
model component is best suited for higher mmWave channel modelling but may be useful for lower 
frequencies as well. 

In physical reality, antenna elements of Tx and Rx arrays have slightly different propagation lengths on LoS 
path. These per antenna pair propagation lengths depend on geometries and orientations of the arrays. 
Similarly, there are different propagation lengths on NLoS paths, which depend on the previously mentioned 
aspects and on the interaction type and position of the interacting object. These slightly different path lengths 
cause frequency-dependent phase offsets between signals on antenna elements. Moreover, the Doppler 
phenomenon is essentially caused by temporal variation of the electrical path length, and it is therefore 
dependent on the radio frequency.  

Assumptions for the near-field model component can be summarized as follows:  

• The model component is intended for extending geometry-based stochastic channel (GSCM) models, 
such as those in [38.901].  

• Antenna arrays with spatially separated elements with known array geometries are used. 
• Modelled environments can be either indoor or outdoor and in LoS or NLoS condition.  
• All wave material interactions between link-ends are specular reflections. This assumption is least 

arguable at upper mmWave radio frequencies.  

The model component provides enhancements both for the near-field and wideband cases. It is applicable both 
for the base station (BS) and user equipment (UE) type transceivers as well as RISs. 

Methodology: The idea of the proposed solution is to provide a simple means to determine the propagation 
distance between each Tx and Rx antenna element. In mobile channels, the time-variant propagation delays 
are determined. These per antenna propagation delays can be used to substitute the departure/arrival related 
phase terms of antenna arrays and the phase terms related to the Doppler shift, as they are used in legacy 
models. For the LoS path it is straightforward to calculate distances between Tx and Rx arrays since array 
locations and element locations within arrays are known. In the case of NLoS paths this is not trivial, since the 
model provides only angles and delay, but not locations or types of interacting objects. If the location, 
orientation and other characteristics of, e.g., a reflecting surface or a diffracting edge were known, one could 
determine per antenna path lengths, but the model does not provide this information. 

Simple operations to approximate virtual array positions for each propagation path can be done to overcome 
this problem. It is done by rotating the Tx antenna array in the global cartesian coordinate system such that the 
arrival and departure angles are pointing towards each other and the distance between array centres corresponds 
to the original path length in metres. Per antenna distances can be calculated similarly as in the LoS path case, 
based on the original Rx antenna coordinates and the new virtual Tx antenna coordinates. This operation is 
performed separately for each path. The underlying assumption is that the interaction is reflection, which is 
the most common and highest gain interaction type at sub-THz frequencies. Specular reflection can be well 
assumed in the absence of interaction type information in the 3GPP model [38.901] and similar stochastic 
models. 

 
Figure 3-2: A block diagram of the near-field component for 3GPP type geometry based stochastic channel 

models. 

The block diagram of Figure 3-2 illustrates the steps of the model component. Input are channel model 
parameters of 3GPP and similar geometry-based models. First Tx antenna array is rotated and translated in the 
global coordinate system separately for each (sub-)path such that arrival and departure angles point at each 

For each path, translate 
and rotate Tx array such 

that DoA = –DoD and 
the Rx-Tx distance 

corresponds to 
propagation delay 

For each path, calculate 
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other and the distance between Rx array and virtual Tx array centre corresponds to the propagation delay. Then 
Euclidean distances are calculated between each Rx and virtual Tx element pair, again separately for each 
path. Finally, this per path per antenna pair distance information is used to determine phase terms that 
characterize multiple-input multiple-output (MIMO) array geometries. Resulting phase fronts will be curved, 
in the near-field condition. Finally, these phase terms are used to calculate MIMO channel matrices together 
with all other propagation parameters of the 3GPP model [38.901] such as, e.g., polarimetric path gain 
matrices. 

3.3 Coverage analysis at THz frequencies 
Problem statement: THz frequencies (300 GHz – 3 THz) are located between millimetre-wave (mmWave) 
band (30–300 GHz) and far infrared (3–20 THz) bands and provide increased bandwidths (in the order of tens 
up to hundreds of GHz) compared to the ones achievable with mmWave, leading to meet the demands for 
increased data rates up to Tbps. The countereffect is represented by a conspicuous reduction of radio coverage 
compared to the one achievable with mmWave, due to the experienced high propagation loss. 

The propagation loss challenges posed by THz frequencies are analysed in case of LoS in terms of spreading 
loss and molecular absorption loss. The target is to provide an estimation, based on theoretical analysis, in 
terms of radio coverage impacts compared to the one achievable at 100 – 300 GHz. 

Methodology: Figure 3-3 reports the sequence of blocks leading to the coverage reduction evaluation at THz 
frequencies compared to the achieved coverage at mmWave. 

 
Figure 3-3: Block diagram of the overall coverage analysis at THz frequencies. 

The evaluation is provided by path loss theoretical analysis for both mmWave and THz frequencies, leading 
to the achievable distances and coverage for both the channel models. 

Evaluation metrics definition: 

• Path loss [dB]: mmWave Indoor Hotspot (InH) – Office – LoS (d3D [m], fc [GHz]) 

mmWave
Path loss evaluation for InH – Office 
at upper limits of d3D mmW = 150 m 

and fc = 100 GHz via (3.1)

mmWave
Path loss evaluation for InF at upper 
limits of d3D mmW = 600 m and fc = 

100 GHz via (3.2)

THz
d3D THz evaluation at 600 GHz for the 

same path loss value via (3.3)

THz
d3D THz evaluation at 600 GHz for the 

same path loss value via (3.3)

mmWave
d2D mmW and coverage evaluation at 

fc = 100 GHz for different path loss 
values via (3.4) and (3.5)

THz
d2D THz and coverage evaluation at fc = 
600 GHz for the same path loss values 
achieved for mmW via (3.4) and (3.5)

THz coverage reduction 
evaluation at 600 GHz 

compared to the mmW
coverage at 100 GHz 
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Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 40 / 218 

 

• Path loss [dB]: mmWave Indoor Factory (InF) – LoS (d3D [m], fc [GHz]) 

• Path loss [dB]: THz – LoS (d3D [m], fc [Hz]) 

The first term in (3-3) represents the molecular absorption loss, whilst the second one denotes the spreading 
loss. 

The cell radius d2D for any considered d3D for both mmWave and THz frequencies is evaluated via (3-4).  

• Cell radius [m] 

𝑑!" = #(𝑑3D)! −	(ℎBS − ℎUE)!	 (3-4) 

The coverage reduction for any considered path loss for mmWave and THz frequencies is evaluated via (3-5). 

• Coverage reduction [%] 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛	[%] = (1 −
𝜋(𝑑2D	THz).

𝜋(𝑑2D	mmW).
)100 (3-5) 

Results: The results in terms of impact on the system are reported in Table 3-2 highlighting the resulting THz 
coverage reduction at 600 GHz compared to the mmWave coverage at 100 GHz (derived from the achieved 
d3D at 600 GHz and at 100 GHz, respectively) for the same values of path loss. As expected, it is shown a 
conspicuous reduction of THz radio coverage compared to the one achievable with mmWave, due to the 
experienced high propagation loss. THz frequencies are therefore suitable for providing focused coverage 
spots, in a range up to roughly 100 m, depending on the acceptable path loss requirements of the overall system. 

Table 3-2: THz coverage reduction evaluation compared to mmWave coverage.  

 Benchmark Achievement Impact on the system 

 mmWave @ 100 GHz THz @ 600 GHz THz @ 600 GHz vs 
mmWave @ 100 GHz 

Path loss [dB] d3D mmWave [m] d3D THz [m] Coverage reduction [%] 

110 150 10 99.57% 

130 600 45 99.44% 

147.6 N/A 100 N/A 

System model, mathematical model, assumptions, and results evaluation for coverage analysis at THz 
frequencies are reported in Section A.1.2. 

3.4 Impact of rough and coated surfaces on reflection coefficients 
Problem statement: Ray tracing are popular deterministic propagation channel models to evaluate the 
performance of wireless radio interfaces or to predict the coverage area. They use a geographical database or 
digital map to compute all possible rays i.e., direct, reflected, transmitted, diffracted, scattered paths, between 
two or more points such as transmitter, receiver, RIS, relay, etc. The ray amplitude and geometrical features 

𝑃𝐿))*	,-./012 = 32.4 + 17.3log34(𝑑5") +	20log34(𝑓6),	    1	m	≤	𝑑5"	≤	150	m,	0,5	GHz	≤	𝑓6	≤	100	
GHz (3-1) 

𝑃𝐿))*	,-7/012 = 31.84 + 21.5log34(𝑑5") +	19log34(𝑓6),			1	m	≤	𝑑5"	≤	600	m,	0,5	GHz	≤	𝑓6	≤	100	
GHz	 (3-2) 

𝑃𝐿8.9/012 = 𝑘(𝑓6)𝑑5"10log34(𝑒) +	20log34(4𝜋𝑓6𝑑5"/𝑐),	300	GHz	≤	𝑓6	≤	3	THz	 (3-3) 
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are given by physical laws according to the interaction type between the electromagnetic (EM) wave and the 
environment. This section focuses on reflected paths. The reflection coefficient indicates the reflection gain 
experienced by a path when reflected by a surface. The reflection coefficients are theoretically given by the 
Fresnel equations for a planar infinite surface. They depend on the material relative permittivity, the incidence 
angle and the EM wave polarization. For instance, the reflection coefficient r at the air-material interface and 
at a normal incidence is equal to 12√4&

15√4&
, 𝜀6  being the material relative permittivity. Many deterministic 

simulations use the relative permittivity proposed by the ITU-R model [ITU P.2040-3] where the permittivity 
is considered as a constant regardless of the frequency. It implies that the reflection loss does not depend on 
the frequency. The ITU-R P2040 model is mainly defined up to 100 GHz but recent work performed in the 
Hexa-X project [HEX23-D23] shows that the model could be extended up to 300 GHz with homogeneous and 
flat surface materials such as glass or plexiglass. Nevertheless, some differences were observed for materials 
with rough or coated surfaces at frequency above 50 GHz. The goal of this section is to address the reflection 
coefficient deviation from the ITU-R P2040 model for rough or coated surface materials. 

Methodology: The measurement equipment is based on a vector network analyser (VNA) and frequency 
extenders. The measurement is divided into three sub-bands defined by the frequency limits of the VNA, 
extenders, or antennas (5-40 GHz, 110-170 GHz, 170-260 GHz). The antenna is a dual-ridge ultra-wideband 
antenna for frequencies below 40 GHz and a standard horn pyramidal antennas for frequencies above 50 GHz. 
Figure 3-4 illustrates the mechanical part that allows a free space measurement for reflection coefficients. The 
material under test was placed at normal incidence in front of the Tx/Rx antenna. Common building materials 
such as raw and coated plasterboard, raw and melamine faced chipboard, mortar with different roughness, 
patterned glass and carpet tile were measured.  

 

 
Figure 3-4: Measurement system for material reflection loss estimation 

The Tx/Rx measurement antenna can move on a vertical plane and therefore can scan the material by 
performing an 𝑚 × 𝑛 measurement matrix. An 11 × 11 measurement matrix with points separated by 1 cm 
was performed. The role of the measurement matrix is to check the impact of the reflection point location on 
the reflection coefficient. 𝐻789(𝑓,𝑚, 𝑛) represents the intrinsic reflection frequency response of the material 
under test (MUT). Details on the measurement procedure and data processing can be found in [HEX23-D23].	
𝑝𝑝𝐻:;<=>?@ (𝑓)  is defined as the average power profiles of 𝐻789(𝑓,𝑚, 𝑛)  and is equal to 
1
:=

∑ v𝐻789(𝑓,𝑚, 𝑛)v.:,= . 

Results: At time of writing, the data analysis was still ongoing, therefore this section reports very initial results 
on the impact of rough surfaces. Refined analysis on rough surfaces or results related to coated surfaces will 
be included in a future deliverable.  

Figure 3-5 displays 𝑝𝑝𝐻:;<=>?@ (𝑓)  for different rough or non-flat materials and compares them with the 
theoretical power reflection coefficient |𝑟|.. When the surface is rough, then scattering occurs and the wave 
power reflected in the specular direction is diminished as a portion of the incident wave is reradiated in various 
scattered directions. Mortars A, B, C, D are characterized by a low, medium, high and very high roughness, 
respectively. They illustrate the surface roughness impact on the reflection coefficient due to the scattering. 
When the frequency increases and/or when the surface roughness increases, 𝑝𝑝𝐻:;<=>?@ (𝑓)  decreases. For 
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frequencies below 40 GHz, 𝑝𝑝𝐻:;<=>?@ (𝑓) is close to |𝑟|.  for mortars A, B, C indicating that scattering is 
negligible. But at frequencies above 100 GHz, 𝑝𝑝𝐻:;<=>?@ (𝑓) is reduced compared to |𝑟|. by more than 10 dB 
for mortars C and D. Sub-THz wireless systems should target more indoor environment including airport or 
train station halls where raw or painted concrete walls would have a surface roughness like that of mortars A 
and B. The average reflection gain reduction should be limited to 5 dB. The reflection gains given in this 
section are average values on the measurement matrix, but it strongly depends on the reflection point location. 
For instance, the mortar A reflection gain standard deviation calculated on the 𝑚 × 𝑛 measurement point 
matrix is always lower than 1 dB but reaches 5 dB for mortars C and D above 100 GHz. Scattering may erase 
the reflected path at some points as the reflection gain is around -30 dB for frequencies above 100 GHz. 
Conclusions drawn to rough surfaces such as mortar surfaces can be extended to any non-flat surface such as 
patterned glass or carpet as illustrated by Figure 3-6. 

 
Figure 3-5: 𝒑𝒑𝑯𝐦𝐞𝐚𝐧

𝐌𝐔𝐓 (𝒇) for different mortars. 

 

 
Figure 3-6: 𝒑𝒑𝑯𝐦𝐞𝐚𝐧

𝐌𝐔𝐓 (𝒇) for a carpet tile and a patterned glass. 

3.5 Signal level analysis for RIS in a simplified scenario 
Problem statement: The derivation of a signal model for passive RIS highlights the “double fading” effect, 
for which the equivalent path loss of the transmitter-RIS-receiver link is the product, instead of the summation, 
of the path losses of the transmitter-RIS link and RIS-receiver link [OBL+19]. The path loss of the reflected 
link is then usually much larger than that of the direct link and the expected gains from the introduction of RIS 
may reduce when the direct link is not completely blocked. To overcome this physical limit, the concept of 
active RIS that can also amplify the reflected signal has been recently proposed [ZDC+23]. A signal model for 
calculation of the signal-to-noise ratio (SNR) at the user receiver is derived, considering both passive and 
active RIS. The effect of RIS on the signal received by the user is then determined in a simplified propagation 
scenario, as the one depicted in Figure 3-7. The effect of the direct link, with different levels of blockage, is 
also analysed to highlight the potential gains from the introduction of RIS in the system. 

A signal model for an RIS assisted wireless system requires two key elements: a suitable far-field path loss 
model and a signal model/equation for SNR calculation at the receiver. The approach for path loss modelling 
used in this analysis is based on [Ell21], where the scattering by the RIS is computed as the discrete sum of 
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fields scattered from each RIS element. The key performance indicator (KPI) used to evaluate the effect of the 
RIS in the system is the SNR at the receiver, which is directly related to the radio coverage improvement that 
the RIS can provide. 

 
Figure 3-7: System model for the analysis of the effect of the RIS. 

Methodology: A Single-Input Single-Output (SISO) configuration is considered and the RIS is in the far field 
region of the transmitter as well as the receiver is in far field with respect to the RIS. Ideal operation of the 
RIS is assumed, with perfect channel state information knowledge so that the RIS reflection coefficients can 
be set to achieve perfect coherent combination at the user receiver. The signal received by the user in case of 
a passive RIS can be expressed as: 

𝑦ABC = w𝑃D y	z𝛽EF#
(H)ℎ6J	Θ	ℎC6 +w𝛽CJ𝑒KL'(~ 	𝑥 + 𝑛 (3-6) 

where 𝑃D is the BS transmit power, 𝑥 ∼ 𝐶𝑁(0,1) denote the symbol transmitted from the BS, ℎ𝐬𝐫 ∈ ℂ𝑵,𝟏 and 
ℎ6J ∈ ℂ𝟏,𝑵  are the normalized line of sight BS-RIS and RIS-user channel respectively, 	
𝚯 = diag�𝑝1𝑒KL) , … , 𝑝Q𝑒KL*�𝜖	ℂQ,Qis the reflection matrix of the RIS, with 𝜙= ∈ [0, 2𝜋] representing the 
adjustable phase shift and 𝑝=𝜖[0, 1] is the adjustable amplitude factor of the n-th RIS element, 𝛽EF#

(H)  is the 
coupling loss (i.e., propagation loss + antenna gains) between transmitter and receiver over the indirect path 
through the n-th RIS element, 𝛽CJ is the coupling loss on the direct path between transmitter and receiver, 𝜙CJ 
is the phase shift accrued on the direct path, 𝑁 is the number of RIS elements and finally 𝑛 ∼ 𝐶𝑁(0, 𝜎.) 
represents the thermal noise at the receiver.  In case of an active RIS the received signal can instead be 
expressed as follows: 

𝑦B!D = w𝑃D y	z𝛽EF#
(H)ℎ6J	Θ	ℎC6 +w𝛽CJ𝑒KL+,~

�����������������������
useful	signal

	𝑥 + w𝛽6J𝑒KL&, 	ℎ6J	Θ	𝒏𝒓�������������
noise	introduced	by	the	RIS

+ 𝑛⏟
thermal	
noise	at	RX

 
(3-7) 

where 𝒏𝒓 = �𝑛h,1,𝑛h,., . . , 𝑛h,Q�
@ ∼ 𝐶𝑁(0, 𝜎h.𝑰𝑵)  denotes the thermal noise introduced by active RIS 

components and 𝛽6J is the coupling loss over the link between RIS and user. From the equations above it is 
then possible to derive the SNR expression at the user receiver in case of a passive and active RIS. The signal 
level analysis looks to the net impact in terms of received power. The direct path with blocking attenuation 
and the reflected path through the RIS are combined in terms of power at the receiver (i.e., no phase coherence 
between direct and reflected path is assumed). 

The source (BS transmitter) is located in cartesian coordinates (expressed in metres) at the position  
�𝑠i , 𝑠j , 𝑠k� = (0,0,0) m, the user receiver is placed at position �𝑢i , 𝑢j , 𝑢k� = (300,0,0)	m. The RIS is moved 
horizontally in different positions with step Δi of 10 m and the position of its centre can be expressed as 
�𝑟i , 𝑟j , 𝑟l� = (m ∙ Δi , 50, 0) with 𝑚 = 0,1, . . ,30. The case of a square RIS with 𝑁=256 reflecting elements 
and a carrier frequency of 26 GHz with bandwidth of 100 MHz is considered. In case of passive RIS the 
reflecting elements are modelled with an amplitude reflection factor 𝑝= = 1	∀𝑛, while for active RIS the 
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reflecting elements are modelled with an amplitude reflection factor 𝑝= = 10	∀𝑛 that corresponds to a power 
gain of each element equal to 𝐺EF# = 20 dB and Noise Figure 𝑁𝐹EF# = 10 dB. 

Results: The Figure 3-8 shows the gain in terms of SNR at the receiver between the RIS assisted wireless 
system and a baseline system without RIS. In the latter case only the direct propagation path between 
transmitter and receiver provides the connectivity, while the reflected path through the RIS is turned off by 
setting the amplitude gain of the RIS elements to zero (i.e., 𝑝= = 0	∀𝑛). The abscissa represents the x-axis 
position of the RIS in metres and the ordinate is the SNR increment at the user receiver in dB obtained by 
introducing the RIS. The five curves in each figure are obtained for a different value of the additional 
propagation loss caused by blockage on the direct path between the transmitter and user receiver. The 
considered values of additional attenuation caused by blockage are 𝐿mno = {0, 10, 20, 30, 40}  dB, where 
𝐿mno = 0 dB corresponds to the absence of obstacles (i.e., free space propagation). 

 
Figure 3-8: SNR gain with respect to a system without RIS at 26 GHz frequency (left: passive RIS 16´16, right: 

active RIS 16´16). 

It can be observed that the gain achievable by the passive RIS is almost negligible when there is a strong direct 
path and the additional attenuation caused by blockage is lower or equal than 20 dB.  On the contrary an active 
RIS shows a significant SNR gain even in case of a strong direct path, and only in the case of absence of 
obstacles (𝐿mno = 0 − 10 dB) also the active RIS provides a negligible SNR gain. It can be also noticed that 
the SNR at the receiver tends increase as the RIS is placed near to the transmitter or the receiver, while the 
minimum SNR is reached for the RIS placed in the middle position between the transmitter and the receiver.  

3.6 JCAS channel models 
The purpose of the section is to delve deeper in the models needed to support sensing and JCAS use cases. 
Sensing use cases are first reviewed, based on which a set of relevant sensing aspects or features are determined 
that the JCAS channel models should support. A selection of currently available models is then provided and 
related to these features.  

3.6.1 JCAS use cases 
While many use cases for sensing and JCAS have been discussed, the current document limits this discussion 
to those from [HEX223-D12] and from [22.837]. In [HEX223-D12], five use cases involve sensing, namely: 

1. Seamless Immersive Reality: “Some service scenarios may include JCAS or may apply sensor fusion 
of network and sensor data of connected devices”. 

2. Cooperating Mobile Robots: “Robots and cobots depend on capturing the environmental context. 
Network-integrated sensing may complement or replace dedicated onboard sensors. Efficient transport 
of data/information from connected external sensors is likely needed.” 
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3. Network-Assisted Mobility: “Object detection probability, Object location accuracy/resolution, 
Object velocity accuracy/resolution, Object size accuracy/resolution.” 

4. Realtime Digital Twin: “Network-sensing: accuracy, resolution, and range to enrich the digital twin 
model.” 

5. Human-Centric Services (precision healthcare, public safety): “[Sensing] Relevant for most of the 
scenarios.”  

On the other hand, [22.837] lists 32 use cases, including detection of intruders or people in indoor and outdoor 
settings, tracking of various types of automated vehicles (ground and aerial), support for automated driving 
functions, gesture and pose classification, as well as integration with non-3GPP sensors, such as radar and 
lidar. Overall, the use cases span a wide variety of sensing modalities, including monostatic, bistatic, and multi-
static sensing, for detection and tracking as well as for classification.  

3.6.2 JCAS channel model features 
From the use cases, it becomes apparent that several features must be supported by channel models to evaluate 
JCAS performance. Below is a non-exhaustive list of such features. Not all features must be supported 
simultaneously since they are not all relevant for each use case.  

1. Objects in a coordinate system: objects (e.g., buildings, cars, people, unmanned aerial vehicles 
(UAVs)) should be provided in a globally consistent coordinate system with associated 3D position, 
3D orientation, and 3D velocity vectors. Objects refers both to objects of interest (e.g., to be detected 
and tracked) and to objects that are part of the background and that generate clutter.  

2. Different object types: the objects should include large flat objects (e.g., walls, floors, which have 
wave interaction points that depend on locations of transmitter and receiver) and small objects (e.g., 
pillars, tables), which have interaction points that are independent on the location of transmitter and 
receiver. The notions of large and small should be considered relative to the signal wavelength. The 
object classes should include objects of interest to the use cases, such as people (hands), animals, cars, 
UAVs, as they lead to different channel responses and can affect the polarization of the signals.  

3. Radar cross section (RCS) of objects: Both RCS for monostatic and bistatic sensing, and RCS for 
deterministic and stochastic object modelling should be supported. For large bandwidths, frequency 
dependence of the RCS may become important.  

4. Extended objects: For large models with several resolved interaction points, each interaction point 
should be described with an RCS or reflection coefficient, accounting for aspect angles.  

5. Mobility and Doppler: Movement of objects should be supported (e.g., direction and speed), as well 
as movement of transmitters and receivers, as well as their corresponding Doppler shifts. 

6. Micro-Doppler: In addition to Doppler shifts induced by objects, mechanical vibration or rotation of 
parts of these objects leads to micro-Dopplers (sidebands around the main Doppler shift). Such micro-
Dopplers of objects should be supported.  

7. Space/time consistency: the set of channels from a transmitter to one or more objects (in the global 
coordinate system) to several spatially separated receivers should be possible to generate. Similarly, 
the set of channels from several transmitters to one or more objects (in the global coordinate system) 
to a receiver should be possible the generate. These channels much be spatially consistent and correctly 
account for the field of view of each transmitter and receiver. Similarly, correlations across time of the 
transmitters, receivers, or objects move must be supported.  

8. Near-field effects: Wave-front curvature, between transmitter and objects, between objects and 
receiver, and between transmitter and receiver should be supported. This curvature becomes 
significant when the distance between object and transmitter or receiver is less than the Fraunhofer 
distance 2𝐷./𝜆  [Mol11], for maximum array size 𝐷  and wavelength 𝜆 . Moreover, channel non-
stationarity across larger arrays (i.e., variations of amplitude and phase due to differences in distance 
and blockages) is an additional near-field effect. Note that far-field effects are implicitly included.  
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9. Ability to generate data sets for classification use cases: Such use cases require labelled training data 
for classification (e.g., gesture recognition, pose classification), when these are not provided as inputs. 

10. Relation between communication and sensing channel: the communication and sensing channel 
between a transmitter and a receiver are in principle identical, including channel reciprocity. 

Some use cases may need to include additional features (e.g., different types of reconfigurable intelligent 
surfaces) to be included, but these are not considered in this document.  

3.6.3 Relation between existing channel models and JCAS channel model features 
Current channel models describe the channel between a transmitter and a receiver, i.e., the environment, where 
this environment may contain objects. They can be grouped into 4 categories (Section 4 of [HEX223-D12]):  

• Statistical geometrical models: Communicating devices are defined on a coordinate system. Clusters or 
objects contributing to clusters are statistically defined either through multipaths characteristics such as 
angle-of-arrivals, angle-of-departure, or time-of-arrival (3GPP, ITU-R and METIS models) or through 
their locations on the same coordinate system as the communicating device (COST 2100). Examples: ITU-
R M.2135 [M.2135], 3GPP 36.873 [36.873], METIS [MET15-D14], 3GPP 38.901 [38.901], QuaDRiGa 
[QDR], ITU-R M.2412 [M.2412-0].  

• Site-specific model: Communicating devices are defined on a map. The map can vary from simple and 
featureless ones with only flat walls and grounds to complex ones including walls with detailed I structure 
and cluttering and time-varying objects. Material properties and radar cross sections of objects are 
necessary in deriving polarimetric multipath gains. The site-specific model is a deterministic channel 
model and does not include any stochastic modelling component, unlike a hybrid model. Examples: ITU-
R P.2040 [ITU P.2040-3] and commercial ray tracing.  

• Hybrid models: Communicating devices are defined on a simple map consisting of, e.g., parallel, and 
perpendicular streets forming a rectangular grid for an outdoor microcellular scenario. By applying the 
raytracing/launching, reflected, scattered, and diffracted paths are identified. Scattering objects are placed 
in a random manner on the map, creating transmitter-object-receiver paths. Examples: [KLM+17], “3GPP 
TR 38.901 map-based option” [38.901], and IEEE 802.11ay [802.11ay], targeting specific environments. 

• Stored channel models: Stored channel model consists of processed measured channel responses, e.g., in 
the form of discrete multipaths. The multipaths include reflected, transmitted, diffracted, and scattered 
paths due to the environment. The measured channels are specific at the measurement site, antenna 
locations, carrier frequencies. Representing the multipaths as discrete entity makes it possible to consider 
varying antennas and bandwidth. Examples: Hexa-X models [DHK23].  

As these models are widely used and well-understood, it is possible to assess whether they provide support for 
the JCAS channel model features described in Section 3.6.2. This analysis is provided in the table below. It is 
important to note that this analysis is not exact and, in some cases, features may be subject to multiple 
interpretations and may thus be supported with minor changes to these existing models.  

3.6.4 Outlook 
In this section, JCAS channel model features were proposed, which are required to enable evaluation of the 
JCAS use cases. Not all features must be supported simultaneously, but rather a subset, depending on the use 
case. Existing channel modelling approaches are evaluated in terms of to what extent they can support these 
features. Overall, the widely used statistical geometric models can only support a small subset of these features, 
but modifications are possible to support around half of the features. Site-specific models and hybrid models 
can already support around half of the features and can in principle be extended to support nearly all features. 
Finally, stored channel models can support all features, provided the corresponding data is present. Hence, 
dedicated data set would need to be collected for each use case and scenario.  

This analysis indicates that for performance evaluation purposes, hybrid models or site-specific models may 
be preferred over the classical statistical geometric models.  
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Table 3-3: Relation between the desired JCAS features and the existing channel models. 
 ((A) = is the concerned feature currently present? (B) = is it possible to include the concerned feature with little 

effort or without significant changes to the methodology? If (A) is answered Yes, then (B) is shown “N/A”.). 

JCAS 
feature 

Statistical geometric models 
(e.g., 3GPP TR 38.901) 

Site-specific 
models (e.g., 
REMCOM 

Wireless InSite) 

Hybrid models 
(e.g., 3GPP TR 

38.901 map-
based option) 

Stored channel (e.g., 
[DHK23]) 

Objects in a 
coordinate 
system 

(A) No, except for some model 
e.g., COST2100. 
(B) Yes, e.g., in case of 3GPP 
38.901, this is provided by the 
hybrid model. 

(A) Yes 
(B) N/A 

(A) Yes 
(B) N/A 

(A) No 
(B) Yes, if assisted by 
ray tracing e.g., [DH23] 

Different 
object types 

(A) No 
(B) No. It is quite difficult to 
consider specular reflections in 
the model. 

(A) No, though 
surfaces with 
different material 
are supported 
(B) Yes 

(A) Yes 
(B) N/A 

(A) Yes, if 
measurements include 
the feature 
(B) N/A 

RCS (A) No 
(B) Yes, the gain of a 
propagation path can be 
determined with a specific RCS 
of the cluster or sub-path. 

(A) Yes, as diffuse 
scattering 
(B) N/A 

(A) Yes, as 
diffuse 
scattering 
(B) N/A 

(A) Yes, implicit in the 
path gain estimates 
(B) N/A 

Extended 
objects 

(A) No 
(B) No. It is quite difficult to 
associate different clusters to 
objects. 

(A) Not explicitly   
(B) Yes 

(A) No  
(B) No 

(A) Yes, if such objects 
are covered in the 
measurements. 
(B) N/A 

Doppler due 
to the 
mobility of 
communicati
ng devices 

(A) Yes 
(B) N/A 

(A) Yes 
(B) N/A 

(A) Yes 
(B) N/A 

(A) Yes, if the 
measurement covers a 
dynamic scenario.   
(B) N/A 

Doppler and 
Micro-
Doppler due 
to motions of 
wave 
scattering 
objects 

(A) No 
(B) Yes 

(A) No  
(B) Yes, a specific 
micro-Doppler is 
determined for each 
propagation path  

(A) No  
(B) Yes, a 
specific micro-
Doppler model 
is required for 
each 
propagation 
path 

(A) Yes, if the 
measurement covers it.  
(B) N/A 

Space/time 
consistency 

(A) No, except for COST2100 
and QUADRIGA models 
(B) Yes, like QUADRIGA 

(A) Yes 
(B) N/A 

(A) Yes 
(B) N/A 

(A) Yes 
(B) N/A 

Near-field (A) No 
(B) Yes, with the knowledge of 
objects’ coordinate system and 
the plane wave model replaced 
by the spherical wave model. 

(A) No 
(B) Yes 

(A) Yes 
(B) N/A 

(A) Yes, if the 
measurement covers 
such cases. 
(B) N/A 

Data sets for 
classification 
use cases 

(A) No 
(B) No 

(A) No 
(B) To some extent 

(A) No 
(B) No 

(A) Yes, if such data are 
measured  
(B) N/A 

Communicat
ion and 
sensing 
channel 
compatibilit
y, and 
reciprocity 

(A) No, because spatial 
consistency is not ensured for 
widely separated devices. 
(B) Yes, like QUADRIGA. 

(A) Yes 
(B) N/A 

(A) Yes 
(B) N/A 

(A) Yes, the channel 
sounder is usually a 
simple device but it is 
assumed that channels 
are reciprocal after 
proper sounder 
calibration.  
(B) N/A 
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4 MIMO transmissions  
Over the last few decades, multiple-input multiple-output (MIMO) technology has been recognized as a crucial 
component in the evolution of wireless communication, spanning from 3G to 5G. It continues to get significant 
interest from both industries and academics for 6G. Within the framework of 6G, MIMO is expected to have 
a significant role, offering the potential to enhance the capacity and efficiency of wireless communication 
systems even further to satisfy future communication demands. This chapter focuses on exploring the 
techniques of MIMO within the context of 6G. Specifically, it explores three major technologies: distributed 
MIMO (D-MIMO), massive MIMO, and reconfigurable intelligent surface (RIS). The chapter presents a 
collection of crucial techniques related to MIMO and provides initial evaluation results.   
The first section analyses D-MIMO schemes and architectures, focusing on both coherent and non-coherent 
transmission. This section also explores decentralized transmission and analogue fronthaul, as well as 
investigates the rotary antenna and one-bit analogue-to-digital converter (ADC) system. Additionally, it 
discusses the sub-THz D-MIMO assisted by a sub-6GHz macro network. The second section covers the 
massive MIMO schemes and architectures. This part includes the analysis of enhanced data detection using a 
1-bit ADC. It then explores the design of a beamformer for sub-THz frequencies, as well as the investigation 
of hybrid analogue-digital architectures for MIMO. Additionally, it discusses the multi-user MIMO and 
location-dependent coded caching. The final section analyses the RIS-assisted transmission. This section 
focuses on the discussion of D-MIMO-assisted with RIS and RIS-assisted integrated access and backhaul 
(IAB). In addition, this section investigates the channel estimation of RIS, RIS reflecting modulation (RIS-
RM), and non-radiative RIS transmission.  
Overall, this chapter provides an adequate discussion of three primary MIMO technologies, including D-
MIMO, massive MIMO, and RIS, within the context of 6G.  

4.1 D-MIMO schemes and architectures 
Distributed MIMO (D-MIMO), an extension of classical MIMO technology, involves using multiple antennas 
for transmitting and receiving data in wireless communication. However, unlike the classical MIMO where 
antennas are grouped at a single location, in D-MIMO they are scattered across a wider area. This distribution 
of antennas helps in covering a larger area more effectively, enhancing the capacity of the network, and 
improving the reliability. It leads to increased data rates and reliability, as different data streams can be sent 
and received simultaneously through various antennas each experiencing different propagation paths. This 
technology reduces interference since the antennas are not closely packed and is more closely located to the 
users, hence, the transmit power can be lowered. One of the main benefits of D-MIMO is its scalability and 
flexibility. Networks can be expanded by adding more antennas as needed, and the deployment can adapt to 
various environments and requirements. However, this advancement comes with challenges. D-MIMO 
requires more complex signal processing and coordination among antennas. In particular, practical challenges 
such as acquiring accurate CSI and synchronization for beamforming are challenging. This section covers 
different methods to address these challenges including methods for distributed CSI acquisition, coherent 
transmission using analogue fronthaul, and non-coherent transmission for the cases with lacking precise CSI.   

4.1.1 Coherent joint transmission – D-MIMO link-level performance evaluation  
Problem statement: D-MIMO will be studied as a solution to propagation channel blockage in mmWave / 
sub-THz bands.  

Methodology: Massive MIMO is a physical-layer wireless technology that has allowed 5G to reach such good 
performances in term of throughput. One limitation in such deployment is the quality of service of cell-edge 
users due to inter-cell interference. One way to tackle this interference is to use joint transmission coordinated 
multi-point (JT-CoMP) which enables coherent transmission from a cluster of access points (APs).  

Because greater throughput is needed in today’s applications, higher bandwidth is required. To find such 
resource, higher carrier frequency is used. This leads to a new problem: communication reliability. Indeed, at 
high frequencies the signal attenuation is increased, the available output power of semiconductors is lowered, 
and most importantly phenomenon of blockage is worsened [CTT+16].  
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Figure 4-1: Example of D-MIMO (Left) and illustration of blockage (Right). 

D-MIMO (Figure 4-1, left) is a technique using both aspects of JT-CoMP and massive MIMO. In fact, with 
D-MIMO the user equipment (UE) receives signals from multiple APs (like JT-CoMP). Moreover, with high-
density deployment, the number of APs is large (like massive MIMO), however, the antennas in D-MIMO are 
distributed. The densification will reduce the likelihood of blockage in the context of mmWave (Figure 4-1, 
right). D-MIMO will be implemented in 3GPP scenarios (see [38.901]) like the Urban Micro for example. 

The objective is to study innovative, scalable multi-antenna techniques adapted to the different 6G frequency 
bands. To do so, a 6G PHY-layer communication chain will be fully implemented using Python to obtain bit 
error rate (BER) versus SNR at the output as discussed in Section 11.1. The chain will implement coding, 
modulation, combined D-MIMO and OFDM technique with precoding to focus energy on UE direction. The 
main challenge will be the channel modelling in the THz frequencies through the choice of modelling blockage 
(time, blocker size, probability law). This will have a significant impact on the final performances when 
comparing D-MIMO with MIMO. 

In a future deliverable, the chain will be validated using a known channel statistical model like Rayleigh fading 
one to be able to derive BER equation and check whether it matches with simulation. Also, a more advanced 
channel is going to be added to bring it closer to reality in the sub-THz spectrum (Chapter 3). Of course, power 
normalization will be done for fairness. 

To obtain performance evaluation, several assumptions are made: RF imperfections, power amplifiers 
nonlinearities, hardware impairments and phase noise (PN) are omitted. The evaluations will be done with 
frequency range 2 (FR2) frequencies and beyond. 

4.1.2 Non-coherent Space-time Coded Transmission  
Problem statement: The mmWave frequency band faces challenges in reliable communication due to high 
path loss and shadowing. Besides, channel estimation can be tricky in several scenarios, e.g., high mobility, 
lack of uplink/downlink reciprocity, hardware calibration conditions and pilot contamination. Non-Coherent 
Joint Transmission (NC-JT) schemes defined in 3GPP [36.741], can be used to address these issues, however, 
it is not clear how to use them with distributed and massive number of antennas. The aim is to explore robust 
transmission modes in challenging conditions by using orthogonal space time frequency block codes (STFBC) 
in D-MIMO precoding to enhance diversity at the UE side and maintain certain data rates even without precise 
channel state information (CSI).  

Methodology: A downlink (DL) D-MIMO network is considered, comprising M radio units (RUs) equipped 
with L antennas each, all connected to a distributed unit (DU) with baseband capability through fronthaul links, 
and K UEs equipped with N antennas each. An RU-UE clustering is carried out to establish disjoint clusters of 
RUs jointly serving UEs, within each of which a suitable STFBC is going to be applied. It is assumed that the 
DL pilot signals are transmitted and channels are perfectly estimated at the UE side, but not known at RUs. 
An example D-MIMO network is depicted in Figure 4-2  
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Figure 4-2: An example D-MIMO network where some UEs are in robust transmission mode. 

Alamouti-like Orthogonal Codes in D-MIMO: Alamouti-like orthogonal codes are used to realize the robust 
transmission mode, which use time, frequency and space diversity at the UE side. The code is set on 
transmitting only 0, 𝑠, −𝑠, 𝑠∗, −𝑠∗where s is the information carrying complex symbol. A code matrix CQ,P,T is 
defined, where Q, P, T denote the number of transmit antennas, number of complex symbols transmitted within 
one code period, and code period, respectively, with dimensions T×M where the (i, j)-th entry includes the 
transmitted signal from j-th antenna at the i-th time/frequency instant. A code is considered orthogonal if, for 
all complex symbols, the columns of the code matrix are mutually orthogonal. Alamouti introduced a code 
with the following code matrix, C2,2,2= §

𝑠1	 𝑠.	
−𝑠.∗ 𝑠1∗

¨ [A98]. Orthogonal codes providing the highest rates for a 
given M are derived in [SXL+4]. 

A single cluster including all RUs with a larger STFBC is not practical since the code rate decreases as the 
code period increases. For lower fronthaul traffic and sufficiently short code period, three smallest perfectly 
orthogonal codes (𝐶.,.,., 𝐶q,q,r, 𝐶r,s,t) have been considered. To apply Alamouti-like orthogonal codes in D-
MIMO, separate RU-UE clusters are determined where each cluster can use a different orthogonal code and 
within each cluster by sharing symbols among UEs. It is important to note that the conventional STFBC 
framework is designed for a single UE transmitting multiple symbols, which can be applied by sharing symbols 
among multiple UEs and each UE can locally decode its intended symbol. Herein, sharing symbols between 
multiple UEs decreases the diversity gain and SE. Nevertheless, in case of high inter-user interference, 
particularly among closely located UEs, adopting a multi-user clustering approach may bring additional 
benefits. 

Achievable User SEs: Based on the selected STFBC and the time/frequency index, RUs transmit one of the 
symbols s, −s, s∗, −s∗, 0. For a given cluster of RUs and UEs, the received signal at the k-th UE can be written 
as 

𝐫u,= = ª 𝐡u,=,v𝑠v
v∈x-

+ ª 𝐡u,=,v𝑠v
v∈y-x-

+ ª 𝐡u,=,v𝑠v
v∉y-

+ 𝐳u,=, 
(4-1) 

where 𝑠v	  is the transmit symbol, 𝐫u,= is the received signal vector at the n-th antenna of the k-th UE. 𝑆u and 
𝐶urepresent the set of indices for symbols intended for k-th UE and symbols transmitted within the cluster of 
k-th UE, respectively. The augmented channel vector 𝐡u,=,v is defined as the channel for the n-th antenna of k-
th UE for the symbol 𝑠v.  and this vector includes the channels of serving RUs according to the cluster of k-th 
UE and the order of symbol 𝑠v in that cluster. 𝐳u,= follows a complex normal distribution CN (0, 𝜎u.I) as the 
noise vector at the n-th antenna of k-th UE. Given that a perfectly orthogonal code is provided, the augmented 
channel vectors become orthogonal, i.e., 𝐡u,=,v{ 𝐡u,=,K = 0 for all 𝑖 ≠ 𝑗	and	𝑖, 𝑗 ∈ 𝐶u. Due to the orthogonality 
of the code and the disjoint clusters, the k-th UE can eliminate symbols in the difference between two sets, 
𝐶u/𝑆u, while interference from outside the cluster 𝐶u remains. Hence SINR for the symbol 𝑠v for any 𝑖 ∈ 𝑆u 



Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 51 / 218 

 

is found as SINRu,v =
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 where 𝑃� is the transmit power. Since instantaneous CSI is 

not known at the RU, achievable outage user SEs can be found with various approaches: 

Ergodic SE can be found as 𝑆𝐸;h���v�,u,v =
1
@7
∑ Ε[log.(1 + SINRu,v)]v∈x- . All codes are extended to 𝑇� time 

samples considering multiple code periods. To evaluate ergodic SE, probability density function of 
∑ 𝐡u,=,v{ 𝐡u,=,vQ
=�1  need to be calculated. The solution and proofs can be found in [KHR+23]. 

Outage SE assuming a constant transmission rate and successful decoding in case instantaneous SINR 
surpassing a threshold SINR:v=,u,v. Monte-Carlo method is used for numerical evaluation and outage SE can 
be found as 𝑆𝐸���<�;,u,v = º1 − Pr�SINRu,v 	< 	SINR:v=,u,v�»∑ log.�1 + SINR:v=,u,v�v∈x-  

Cluster Formation: The primary objective is to identify RU-UE clusters to optimize the overall performance. 
A heuristic clustering method is proposed based on closed-form ergodic SEs, where clusters are grouped in a 
three-step algorithm that utilizes large-scale fading and correlation parameters and is executed at the DU. The 
steps can be summarized as (i) one-to-one association of RU antenna and UE to form K disjoint clusters, (ii) 
iteratively merging clusters based on minimum ergodic SE in clusters, (iii) adding remaining antennas. More 
details can be found in [KHR+23]. 

Results: Numerical simulations are performed in an indoor factory of area 120 × 60 meters, where operating 
frequency is 28 GHz with 200 MHz bandwidth. Path loss and shadowing is set as in [38.901], and small-scale 
channel model is Rayleigh distributed. Maximum transmission power (Pt) is 0.2W and UE noise figure is 9 
dB. Outage probability is set as 0.01. Alamouti-like STFBC in D-MIMO is compared with small cells and NC-
JT case 2b (single frequency network (SFN)) transmission [36.741] . Figure 4-3 shows the per-UE cumulative 
distribution functions (CDFs) for outage and ergodic SEs, where it is observed that STFBC together with 
optimized clustering outperforms baseline methods, i.e., small-cell and SFN in terms of outage SEs, and 
provides 5th percentile ergodic SEs compared to small-cell and SFN. Another observation is that a significant 
enhancement of the 5th percentile user ergodic SEs can be achieved with STFBCs, while the mean values are 
similar both for STFBC and small-cell, and this shows that the clustering can optimize the worst-case SEs by 
maintaining a similar performance for all users on average. 

 
Figure 4-3: CDFs of per-user outage and ergodic SEs for Alamouti-like STFBC, SFN and small cell approach 

𝑴	 = 	𝟏𝟔,𝑲	 = 	𝟒,𝑵	 = 	𝑳	 = 	𝟏. 

4.1.3 Distributed OTA cooperative beamforming design 
Problem statement: D-MIMO emerges as a promising technology capable of enhancing spectral efficiency 
beyond the confines of traditional cellular networks. Diverging from the conventional approach, D-MIMO 
integrates all APs within a specific area under the same operator, serving all the UEs. This configuration 
diminishes intercell interference, making it especially well-suited for small-cell applications. Despite the 
predominant focus in the literature on non-cooperative beamforming strategies (example, based on maximum 
ratio transmission, local minimum mean squared error), where each AP locally designs its beamformer without 
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exchanging CSI through fronthaul links, recent studies highlight the potential for cooperative beamforming 
strategies (example, based on global minimum mean squared error) to yield even greater performance gains. 
However, the cooperative beamforming design requires the CSI exchange via fronthaul links, which may not 
be feasible due to the fronthaul bandwidth limitations and not scalable. This work provides a cooperative 
beamforming design without exchanging the CSI via fronthaul links, using the bi-directional training. 

Methodology: Considering the downlink communication, the cooperative beamformers is designed using bi-
directional training, where the UEs update their combiners using downlink pilots (DL), and APs update their 
precoders using uplink pilots (UL-1 and UL-2) using iterative bi-directional training.  

The considered D-MIMO system consists of B APs, and K UEs with 4-antennas randomly distributed in a 
500m\ X\ 500 m geographic area. the APs are connected to a central processing unit (CPU) via fronthaul 
connections. The channel between kth UE and bth APs is 𝑯�,u , which includes both large-scale fading 
coefficient and small-scale fading coefficient. The sum-mean squared error (MSE) minimization is considered 
to optimize the precoders at the AP and combiners at the UE, where the MSE of UE ‘k’ is given as 

𝑀𝑆𝐸u =	∑ |∑ 𝒗u{𝑯�,u
{ 𝒘�,u�� |.u� − 2𝑅𝑒�∑ 𝒗u{𝑯�,u

{ 𝒘�,u� � +		𝜎.|𝒗u|. + 1	,  (4-2) 

where 𝒗u 	is the combiner at UE k, 𝒘𝒃,𝒌 is the UE k precoder at BS b. 𝜎. is the AWGN power at UE k. 

 

Figure 4-4: D-MIMO systems (left). Single Bi-directional iteration consists of a DL and two UL pilot signal (The 
BSs in the figure can be treated as APs). 

The MSE is not convex jointly with respect to both the combiner and precoder. Therefore, alternating 
optimization is used to minimize the MSE, where combiner is minimized for a fixed set of precoders and vice-
versa in an iterative manner using bi-directional training [AGT21]. 

Considering the TDD system, each UE computes the combiner using the DL pilot signals from all the base 
stations (BSs) (see Figure 5-4). Each AP computes the precoder based on two UL signals (see Figure 5-4). 
UL-1 comprises local UE channel information (where each UE transmit precoder pilots), while UL-2 contains 
the cross-channel information among the APs (where each UE transmit the received DL pilot signal as UL). 
Thus, the combiners and precoders are iteratively updated until the convergence or a predefined criteria is met 
using the bi-directional training iterations. The complexity of the proposed method is much less than the CPU 
based design. For more details about the implementation and complexity, please check [AGT21].  

Results:  The evaluation considers 25 BS placed on square grid of 500m×500m area. 16 multiantenna UEs 
are randomly placed. The channel between UEs and APs follows Rayleigh fading, and the carrier frequency is 
2.5 GHz. The proposed distributed beamforming method with OTA signalling, i.e., distributed-OTA, 
distributed GB, distributed best response (BR), distributed best response-group specific (BR-GS) outperform 
the local (Local minimum mean squared error (MMSE), MF) and centralized methods in both unicasting and 
multicasting. The number of OTA resources required for unicasting depends on the number of UEs, while the 
number of OTA resources required for multicasting depends on the number of multicasting groups. Note that 
the imperfect channel includes AWGN at APs and UEs. 
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Figure 4-5: Unicasting scenario: the proposed distributed OTA scheme approaches to the distributed-backhaul, 
and outperform the centralized and local beamforming methods [ATG21]. 

 
Figure 4-6: Multicasting scenario: the proposed distributed GB with reduced training resources outperform the 

other methods. 

4.1.4 D-MIMO with rotary ULAs  
Problem statement: Traditional wireless communication systems adopt static antennas, that is, antennas or 
antenna arrays without any movement capabilities. Nevertheless, the idea of antenna elements with movement 
capabilities has recently gained traction among the research community [ZMZ23]. Movable antennas can 
exploit wireless channel variation in the continuous spatial domain. This additional degree of freedom can 
enhance the quality of wireless links, and consequently the communication performance. 

The movable antennas for multi-user MIMO (MU-MIMO) that have recently been studied in the literature 
consist of antennas that can move in a confined 2D or 3D region [ZMZ23]. Such systems require many 
components such as mechanical controllers, drivers, and cables. Consequently, they are complex, bulky, 
expensive to be deployed and maintained, and can potentially have mechanical robustness issues. In this 
contribution, a movable antenna system that presents lower complexity, deployment and maintenance costs is 
proposed. More specifically, the performance of MU-MIMO systems where the APs are equipped with rotary 
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uniform linear array (ULA) is studied. A rotary ULA consists of a ULA coupled to a servo motor, which 
controls its rotation. Industrial servo motors can perform high speed rotations (on the order of hundreds of 
microseconds to few milliseconds) with very high precision (angular resolution on the order of 0.1°). Thus, 
rotary ULAs are suitable to enhance the connectivity in low mobility scenarios where the same subset of 
devices are transmitting/receiving data during a sufficiently long period of time. Considering an indoor 
industrial scenario, the numerical results show that the adoption of APs equipped with rotary ULAs can 
significantly enhance the mean per-user achievable SE when compared to deployments with static APs. 

Methodology: An indoor square coverage area with dimensions 𝑙 × 𝑙	𝑚. is considered. The coverage area is 
served by Q APs, each equipped with a ULA with S=M/Q half-wavelength spaced antenna elements, where 
M is the total number of antenna elements of the system. the APs are deployed at the ceiling of the coverage 
area, at height ℎ�~. 

Several single antenna devices are randomly and uniformly distributed on the coverage area. From this large 
number of potentially active devices, a random subset of 𝐾 devices is active and seeks to transmit data in the 
uplink in each time slot. All devices are positioned at the same height ℎ>@�. 

Fully centralized processing is considered, where all the APs simultaneously serve all the devices, and they 
are connected to a common CPU through fronthaul connections. The CPU is responsible for performing all 
the signal processing tasks of the system, including the optimization of the orientation of the rotary ULAs and 
the computation of the centralized zero forcing (ZF) receive combining vectors. 

In this contribution, it is assumed that there are no hardware impairments, and there is perfect synchronization 
among the APs. Moreover, CSI is available at the APs. 

Assuming that CPU has estimates of the positions of all the devices subscribed to the network, for each subset 
of 𝐾 active devices, there is an optimal orientation for the APs that enhances the quality of the wireless links 
between the APs and the devices. The optimal position of the 𝑄 APs is jointly computed by the CPU using 
particle swarm optimization (PSO). The procedure for the location-based optimization of the positions of the 
APs is illustrated in Figure 4-7. 

 
Figure 4-7: Block diagram of the location-based optimization of the rotation of the rotary ULAs. 

Results: Monte Carlo simulation results are generated using MATLAB. The numerical results are averaged 
over multiple network and channel realizations. For each network realization, a new set of positions of active 
devices is generated, which corresponds to a new set of LoS channel vectors. Then, for each network 
realization, several channel realizations are generated. Each channel realization corresponds to a set of NLoS 
components for the active devices. The reader can refer to the Appendix A.2.1 for the detailed assumptions 
and simulation parameters. The numerical results are shown in Figure 4-8. The results for the case of APs 
equipped with static ULAs are compared to the results for the case of APs equipped with the proposed rotary 
ULAs. The curves show that the performance improvement of the rotary ULAs compared to the static ones 
grows with the Rician factor. When the Rician factor is low, the wireless channels are dominated by non-line-
of-sight (NLoS) components. In this case, the rotation of the ULAs does not bring performance gains. On the 
other hand, when the Rician factor grows, the power of the LoS components increases. In this new situation, 
where the channels are dominated by LoS, the rotation of the ULAs brings significant enhancement to the 
spectral efficiency. Moreover, the curves also show that the intermediate setups with Q=2 and Q=4 achieve 
the best performance, which shows that there is a “sweet spot” between the number of APs and number of 
antenna elements per AP that yields the best performance.  
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Figure 4-8: Mean per-user achievable SE 𝑹U versus the Rician factor κ, for different number of APs Q. 

4.1.5 Distributed-MIMO with analogue fronthaul  
Problem statement: D-MIMO networks show better performance compared to traditional co-located systems. 
However, D-MIMO introduces new challenges related to higher demands on bandwidth, synchronization, and 
power consumption [IBN+19]. Therefore, innovative solutions are essential to harness the potential of D-
MIMO in a cost-effective manner. To fully leverage the diversity and power gains of D-MIMO networks, 
coherent joint transmission (CJT) involving two or more transmit/receive points (TRxPs) must be supported. 
However, meeting the stringent synchronization requirements with sub-nanosecond precision becomes crucial 
for CJT. One practical approach to achieving CJT is by employing analogue fronthaul (FH) links in 
combination with centralized processing since channel estimation includes the phase and amplitude change of 
both the wired path (i.e., fronthaul link) and wireless path of each transmitter, providing all the necessary 
information for CJT precoding. 

Methodology: A simple multiple-input single-output (MISO) setup is assumed involving an N-TRxP D-
MIMO network and a single UE. Both the UE and all TRxPs within the network are assumed to have a single 
antenna. Expressing the baseband received signal at the UE in the downlink direction mathematically yields: 

𝑦 = 𝐡𝐰𝑠 + 𝑛 (4-3) 

where h = [h1, h2, …, hN] represents the 1×N channel vector assumed to exhibit flat-fading behaviour, s denotes 
the transmitted data symbol, w stands for the N×1 precoding weights vector, and n characterizes the additive 
white Gaussian noise (AWGN) scalar distributed as 𝒞𝒩(0,𝑁�) where 𝑁� denotes the noise power spectral 
density. To maximize the signal-to-noise ratio (SNR), the precoder w must be computed in a manner that aligns 
the signals from different TRxPs coherently (i.e., phase aligned). For instance, employing maximum ratio 
transmission (MRT) precoding enables achieving the highest SNR gain. Consequently, the SNR received over 
the AWGN channel can be expressed as indicated in reference [TV05]: 

SNR =
P‖𝐡‖.

N�
=ª

p�|h�|.

N�

�

��1

 (4-4) 

where 𝑝v represents the average transmit power assigned to each TRxP. 

Experimental results: The experimental setup with two TRxPs is detailed in Appendix A.2.2. D-MIMO CJT 
is assessed using a 10 MHz OFDM signal carrying high-order 256-QAM symbols across all subcarriers. For 
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fair CJT evaluation, the error vector magnitude (EVM) performance for both TRxPs is adjusted to be nearly 
identical during separate transmissions. To assess D-MIMO flexibility with analogue FH links, TRxP 1 has an 
800m fibre FH link, while TRxP 2 uses a 1.2m coaxial cable, resulting in a ~3.897 µs delay difference 
(considering fibre's light propagation speed at ~68.46% of vacuum speed). This exceeds the cyclic prefix (CP) 
duration for OFDM signals of 2.34 µs (at 30 kHz subcarrier spacing [38.104]), needing more than signal 
precoding alone for CJT, i.e., delay difference measurement and time alignment. Figure 4-9 shows the received 
symbol constellations from individual wireless transmissions of TRxP 1 and TRxP 2, with EVM root mean 
square (RMS) values of around 9.14% and 9.27%, showing similarity. The measured delay difference of 3.906 
µs closely aligns with the theoretical 3.897 µs, accounting for additional delays from optical and electrical 
devices. 

For CJT, separate channel estimation is performed for TRxP 1 and TRxP 2. These estimates are used to 
compute the precoder for the TRxP 2 signal. The precoded signal is aligned in time in accordance with the 
measured delay difference between FH links. Figure 4-10 shows the received symbol constellations, with and 
without precoding and time alignment, i.e., non-CJT and CJT, when both TRxPs are transmitting 
simultaneously. Without CJT processing, an EVM of 99.74% is measured due to the lack of coherency and 
inter-symbol interference (ISI). Conversely, by applying precoding and time alignment, an EVM of 5.01% is 
achieved, maximizing network diversity and power gains by aligning the transmitted signals in time and phase. 

 
Figure 4-9: TRxP 1 and TRxP 2 received symbols constellations and EVM before and after ZF equalization. 

 
Figure 4-10: TRxPs transmitting simultaneously. Non-CJT and CJT received symbols constellations and EVM 

before and after ZF equalization. 

As the transmission channel conditions of the TRxPs closely resemble flat fading the next relationship between 
the EVM and SNR [BHH+18] is valid for assessing the combined diversity and power gains in the network: 

EVMRMS = 9.14% EVMRMS = 9.27%

TRxP 1 TRxP 2

EVMRMS = 99.74% EVMRMS = 5.01%

Non-CJT CJT
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SNR ≈
1

EVME7#
.  (4-5) 

Thus, the CJT gain approximates ~5.35 dB when compared to TRxP 2 transmissions alone and approximately 
~5.22 dB in comparison to TRxP 1 transmissions. It is important to note that for a two TRxPs D-MIMO 
network, the theoretical CJT gain is expected to be 6.02 dB. The observed lower experimental CJT gain is 
attributed, firstly, although the EVM performance of both TRxPs was adjusted to be equal, differences in 
wireless distances between antennas led to unequal transmit power between TRxPs. Additionally, the antennas 
of both TRxPs are not identical, and the wireless transmissions do not occur in a perfectly flat-fading channel. 

4.1.6 One-bit ADC for multi-cell setup 
Problem statement: The next generation of wireless systems, beyond 5G, may operate at extremely high 
frequencies up to 1 THz with large bandwidths, which requires larger antenna arrays and increasingly sharp 
beamforming to maintain a consistent signal-to-noise ratio. However, the analogue-to-digital converters 
(ADCs) /digital-to-analogue converters (DACs) used in current systems consume a lot of power. One solution 
is to use low-resolution ADCs / DACs with 1 to 4 quantization bits to enable the use of massive MIMO arrays, 
which require hundreds or thousands of antennas. 1-bit ADCs/DACs are particularly appealing due to their 
minimal power consumption and simplicity. Additionally, the fully digital architectures can overcome 
limitations associated with hybrid analogue-digital beamforming at sub-THz frequencies. However, the SINR 
with 1-bit ADC is non-monotonic. Therefore, tuning the UE power to optimal SINR across D-MIMO scenario 
is challenging. 

 

Figure 4-11: Distributed massive MIMO system. Here RRHs send the data to the CPU. 

Methodology: To maintain the monotonic behaviour of the SINR in 1-bit ADC remote radio head (RRHs), 
the noise level is tuned at the RRHs. Thus, the signal to interference, noise and distortion ratio (SINDR) is 
monotonic with increasing UE power, and the UE powers are adjusted using gradient, block coordinate 
descent, and fixed-point iterative algorithms for multiple UE cases. 

The distributed massive MIMO system consists of 𝐵  RRHs and 𝐾   single antenna UEs. The RRHs are 
separated by 100 m and UEs are clustered and move in-between the RRHs. The RRHs are connected to a CPU 
via fronthaul  connections. The channel between 𝑘th UE and 𝑏th RRH is 𝒉�,u, which includes both large-scale 
fading coefficient and small-scale fading coefficient. This study focuses on the uplink scenario. 

The min-power and max-min SINDR designs are considered to optimize the UE power levels and the BS noise 
levels. The following equation represents the max-min-SINDR problem used for optimization. 

𝐦𝐚𝐱
𝒑𝒌,𝝈𝒃			

𝐦𝐢𝐧𝐒𝐈𝐍𝐃𝐑𝐤	  

𝒑𝒌 ≤ 𝒑𝑼𝑬 

𝜎� ≥	𝜎:v= 

(4-6) 
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where SINDRu		 is the signal to interference noise and distortion ratio of UE k considering 1-bit ADC RRHs 
[GAT23]. 𝑝u 	is the UE k power and 𝑝?� is the maximum UE transmit power. 𝜎� is the noise level at the RRH 
and 𝜎:v= is the minimum noise level at the RRH corresponding to the AWGN. For a fixed noise level at the 
RRHs, the power of UEs can be optimized using a gradient, fixed-point iteration, or BCD methods.  For the 
noise level optimization (which is more than the thermal noise), linear search is applied over the possible noise 
values. 

Results:  The evaluation considers 2 RRH placed with 100 m distance between them. The carrier frequency is 
28 GHz, Rayleigh fading channel is used. the UEs are moved from one RRH to other RRH, and UEs transmit 
powers and RRH noise levels are optimized for each distance from the reference RRH. The power control with 
dithering tuning improved the SINDR of the UEs. The impact of dithering (i.e., RRH artificial noise level) is 
more pronounced when the UEs are closer to an RRH [GAT23].  

 
Figure 4-12: Two-RRH case: max-min-SINDR vs distance to UE-reference RRH. 

4.1.7 sub-THz D-MIMO assisted by a sub-6 GHz macro network 
Problem statement: Link quality at sub-THz frequencies is sensitive to blockage – LoS links will be relied 
on for providing satisfying link budget and outage probability. A D-MIMO network in form of sub-THz radio 
access nodes connected to a CPU ensures high probability of LoS at sub-THz frequencies. When a device 
moves or rotates, the serving beam needs to be updated. This entails a beam search procedure where the 
network sends reference signals in candidate beams and the device measures and reports the best beams. For 
radio access nodes with only one transceiver chain, beam sounding (sending reference signals in candidate 
beams) will be performed one beam at a time. In a system with many APs and many beams per AP (can be on 
the order of 1000 or 10000 beams in the entire D-MIMO system), the beam search procedure over all the 
beams in the system will take a prohibitively long time, incurring latency and/or system capacity reduction. 

Methodology: As the first step of the solution to the problem above, the list of candidate beams for the beam 
search has to be reduced to a small subset of beams. A fundamental problem to solve is then how to determine 
the list of candidate beams. The proposed solution to the above problem is using the uplink channel 
characteristics from the target user device to a macro coverage node operating at a frequency substantially 
lower than sub-THz (concretely, below 6 GHz) to infer the candidate list for a beam search in the downlink of 
the sub-THz D-MIMO network towards the target UE. The proposed concept, broken down in 3 distinct steps, 
is illustrated in Figure 4-13.  

Beam candidate list can be obtained by means of a neural network (NN) classifier trained to output 
approximations of posterior probabilities 𝑝(subTHz	beam	𝑘	has	best	link	quality	|	sub − 6	GHz	channel). 
One such classifier architecture is a feedforward NN with cross-entropy loss function and softmax output 
activation function. Training and test phases are outlined in Figure 4-14.  
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Figure 4-13: sub-6 GHz assisted beam search in sub-THz D-MIMO. 

In a practical deployment, the training would be performed over a number of different device positions and 
different devices in the coverage area, such that the coverage area is properly sampled. In the test/exploitation 
phase, the probabilities 𝑝u = 𝑝(sub − THz	beam	𝑘	is	best	|	sub − 6	GHz	channel)  at the output of the 
classifier are used to compile the beam candidate lists. In this contribution, two strategies for compiling beam 
candidate lists are used: 

• sort 𝑝u in descending order, pick 𝐾 beams with highest 𝑝u for the list (𝑲 most likely beams) 
• sort 𝑝u in descending order, sum sorted 𝑝u until the cumulative sum > threshold, pick beams that enter 

the cumulative sum (variable length list). 

 
Figure 4-14: Training and test phases. 

Results: The neural network classifier consists of 𝑁�~ single-layer classifiers with 150 nodes in the hidden 
layer, for inferring best beam per AP, and one single-layer classifier with 50 nodes in the hidden layer for 
inferring the best AP. The outputs are combined as 𝑝(best	beam	per	AP) ∙ 𝑝(best	AP) to produce 𝑝u. Best 
beam is here taken as beam with highest receive power at the device. The feature (input) of the neural network 
is vectorized 2D instantaneous angular power spectrum of the multiantenna channel in DFT angular domain 
with 64 dimensions. 

Data is collected from an emulated 3D deployment shown in Figure 4-15, where a ray-tracing, spatially 
consistent channel model is used to generate channels. User positions are distributed over a 4 × 4 meter grid, 
for a total of 8504 positions over the shown coverage area. Data from 5000 positions, sampled uniformly over 
the coverage area, are used for training, 1000 for model validation and 2504 for testing. There is a total of 
128*20 = 2560 beams in the system. 
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Figure 4-15: Deployment configuration with relevant system parameters. 

Statistical distribution of received power in the downlink, labelled as reference signal received power (RSRP) 
for the proposed scheme and setup are shown in Figure 4-16, alongside two benchmarks: 1) choosing the best 
beam from a randomly chosen set of 𝐾 beams, 2) choosing the best beam from the set of 𝐾 beams most 
commonly chosen as best over the training set. For the two benchmarks, no sub-6 GHz information and no 
machine learning (ML) training is necessary; the goal is to see if the proposed ML-based approach with sub-6 
GHz assistance beats the benchmarks. Indeed, when a list of 50 beams is compiled based on the suggestion by 
ML based on sub-6 GHz data, the performance comes a few fractions of dB within the exhaustive search (black 
dashed line). The number of scanned beams in the 50-beam list example is only 50/ (128*20) = 1.9% of the 
total number of beams in the system, indicating an enormous resource overhead reduction when applying the 
proposed scheme.  

 
Figure 4-16: Distribution of received power at the device (RSRP) for the proposed scheme and two benchmarks. 

4.2 Massive MIMO schemes and architectures 
Massive multi-input multi-output (massive MIMO) is a crucial technology in the 5G and future wireless 
communication systems. It has already been implemented in several network scenarios and will continue to be 
used extensively. By augmenting the quantity of antenna elements, the massive MIMO system has the potential 
to greatly enhance spectral efficiency, reliability, coverage, and energy efficiency. By increasing the number 
of antennas and using high-frequency bands e.g., mmWave and sub-THz, the communication performance 
improves. However, massive MIMO encounters numerous challenges. This subchapter addresses several 
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critical problems, including massive MIMO transmission with one-bit converters and data detection, sub-THz 
beamformer design, coded caching, and the multi-user transmission systems. 

4.2.1 Enhanced data detection for massive MIMO with 1-bit ADCs 
Problem statement: New insightful results are presented on the uplink multi-user data detection for massive 
MIMO systems with 1-bit ADCs [RAT23b]. Specifically, the previous works [AT22] and [RAT23a], which 
characterized the expected values of the soft-estimated symbols (i.e., after the linear combining and prior to 
the data detection) for multiple UEs and with maximum ratio combining (MRC) receiver at the BS, are 
extended. Considering 𝐾 UEs and a transmit constellation of 𝐿 data symbols, the exhaustive single-UE data 
detection method proposed in [RAT23a] maps each soft-estimated symbol of the target UE to one of the 𝐿𝐾 
expected values of the soft-estimated symbols based on the minimum distance criterion. This method has two 
main drawbacks: on the one hand, it performs an exhaustive search over the set of expected values of the soft-
estimated symbols corresponding to the target UE resulting from all the possible data symbol vectors, whose 
size grows exponentially with the number of UEs; on the other hand, it does not take advantage of the 
interdependence among the soft-estimated symbols of the interfering UEs as it treats each UE individually. 
Moreover, the analysis in [AT22] and [RAT23a] is limited to the case of MRC, whereas more sophisticated 
linear receivers such as the ZF and MMSE receivers generally lead to better performance. 

The expected values of the soft-estimated symbols when ZF and MMSE are adopted at the BS are evaluated 
numerically. Interestingly, these expected values can be obtained by simple scaling of their MRC counterparts, 
for which a closed-form expression was derived in [RAT23a]. Then, new data detection strategies are proposed 
based on the minimum distance criterion with respect to the expected values of the soft-estimated symbols. A 
joint data detection strategy is proposed, which considers parallel data detection over all the UEs and exploits 
the interdependence among their soft-estimated symbols. Furthermore, a low-complexity variant of the joint 
detection is presented, which is obtained by reducing the size of the search space. Numerical results show that 
ZF and MMSE provide substantial gains in terms of symbol error rate (SER) compared with MRC thanks to 
the reduced dispersion of the soft-estimated symbols around their expected values. In addition, the proposed 
joint detection and its low-complexity variant greatly outperform the exhaustive single-UE data detection 
method described in [RAT23a] since the latter does not account for the interdependence among the soft-
estimated symbols of the interfering UEs. 

Methodology: Consider a single-cell massive MIMO system where a BS, equipped with 𝑀 antennas, serves 
𝐾 UEs in the uplink. Each BS antenna is connected to two 1-bit ADCs, one for the in-phase and one for the 
quadrature component of the received signal. The system model is illustrated in Figure 4-17. 

 

 
Figure 4-17: Fully digital massive MIMO system with 1-bit ADCs. 

The received signal before the 1-bit ADCs is given by 𝒚 = w𝜌𝑯𝒙 + 𝒛 ∈ 𝐶>×1, where 𝜌 is the signal-to-noise 
ratio (SNR), 𝑯 ∈ 𝐶>×�  is the channel matrix, 𝒙 ∈ 𝐶�×1  is the data symbol vector, and 𝒛 ∈ 𝐶>×1  is the 
additive white Gaussian noise (AWGN) vector. A general correlated Rayleigh fading model is assumed for the 
channel. Then, the received signal after the 1-bit ADCs is given by 𝒓 = 𝑄(𝒚) ∈ 𝐶>×1, where 𝑄(. ) is the 1-bit 
quantisation function. Finally, the BS obtains a soft estimate of 𝒙 via linear combining as 𝒙ä = 𝑽𝐇	𝒓 ∈ 𝐶�×1, 
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where 𝑽 ∈ 𝐶>×� is the combining matrix. Imperfect CSI, obtained via the Bussgang linear MMSE estimator 
with pilot length 𝜏, is assumed for the design of the combining matrix. The expected values of the soft-
estimated symbols with MRC can be derived in closed form as a function of the signal-to-noise ratio (SNR), 
the pilot matrix used during the channel estimation, the Bussgang gain matrix resulting from the Bussgang 
decomposition, the covariance matrix of the quantised received signal during the channel estimation, and the 
cross-covariance matrix between the quantised signals received during the uplink data transmission and 
channel estimation. 

Results: 16-QAM data symbols are considered. The channel covariance matrices are generated based on the 
one-ring channel model with no pathloss. The expected values of the soft-estimated symbols with ZF and 
MMSE are difficult to derive analytically and can be obtained using Monte Carlo simulations. Interestingly, 
the expected values with ZF/MMSE can be obtained by simple scaling of their MRC counterparts. This is 
illustrated in Figure 4-18 (a). In general, there is a significant gain for all the data detection strategies obtained 
with the ZF and MMSE compared with their MRC counterparts. The SER gain for the ZF/MMSE receivers is 
not due to their expected values but the reduced dispersion of the soft-estimated symbols around them. The 
proposed joint data detection (JD) and its low-complexity variant (N-JD) provide a significant boost in 
comparison with the exhaustive single-UE data detection (Exh. SUD) with the ZF/MMSE receivers. This 
means that taking advantage of the interdependence among the soft-estimated symbols of the interfering UEs 
gives a notable gain over the data detection strategies that treat each UE individually. This is illustrated in 
Figure 4-18 (b). Therein, it can be observed that the SER curves feature an optimal SNR operating point: at 
low SNR, the AWGN is dominant; at high SNR, the soft-estimated symbols corresponding to the data symbols 
with the same phase are hardly distinguishable. In between these regimes, the right level of AWGN produces 
a proper scrambling of the 1-bit quantised signals at the 𝑀 antennas [AT22] and [RAT23b]. 

  

(a) Expected values of the soft-estimated symbols of 
UE 1 when UE 2 transmits all the possible data 

symbols and MRC, ZF, or MMSE is adopted at the BS 

(b) SER versus SNR obtained with different data 
detection strategies and different receivers 

Figure 4-18: Evaluation of enhanced data detection for massive MIMO with 1-bit ADCs. 

4.2.2 Massive MIMO with 1-bit DACs and ADCs 
Problem statement: Enabling communications in the (sub-)THz band will call for massive MIMO arrays at 
either the transmit- or receive-side, or at both. To scale down the complexity and power consumption when 
operating across massive frequency and antenna dimensions, a sacrifice in the resolution of the DACs/ADCs 
will be inevitable. Simple 1-bit DACs/ADCs can also alleviate the overall complexity and power consumption 
of the RF chains. For instance, 1-bit DACs at the transmitter allow the use of low-cost power amplifiers that 
are not constrained to operate with backoff [LMS+21], whereas 1-bit ADCs at the receiver relax the 
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UE 2 transmits all the possible data symbols from S; MRC is adopted
at the BS.

A. Expected Value of the Soft-Estimated Symbols with ZF and

MMSE

As done in Section II-B for MRC, we focus on the expected
value of the soft-estimated symbols when ZF is adopted at the
BS; the same steps can be followed for the MMSE receiver. The
combining matrix is given by V

(ZF) = Ĥ(ĤH
Ĥ)�1 and the

soft-estimated symbol for UE k can be expressed as x̂(ZF)

k =
[(ĤH

Ĥ)�1](k,:)Ĥ
H
r. Then, the expected value of the soft-

estimated symbol of UE k for a given data symbol vector x is
given by

E(ZF)

k , E[x̂(ZF)

k ] (14)

where the expectation is taken over H, z, and zp. Since the
expected values of the soft-estimated symbols with ZF/MMSE
are difficult to derive analytically, we use Monte Carlo
simulations in this paper and leave the derivation of tractable
expressions for future work. Considering K = 2 and 16-QAM
data symbols, Fig. 2 plots the expected values of the soft-
estimated symbols of UE 1 corresponding to the three different
linear receivers, i.e., MRC, ZF, and MMSE. Interestingly,
we observe that the expected values with ZF/MMSE can be
obtained by simple scaling of their MRC counterparts in (13).
In this respect, let ↵k denote the scaling factor to be applied
to the expected values with MRC so that they coincide with
their counterparts obtained with ZF for UE k. Regarding the
definitions in (13) and (14), let e

(MRC)

k and e
(ZF)

k 2 CLK

denote the vectors containing all the possible expected values
of the soft-estimated symbols for UE k with MRC and ZF,
respectively. Then, ↵k can be computed as

↵k , argmin
t>0

ke(ZF)k � t e(MRC)

k k. (15)

Considering the same setup as in Fig. 2, Fig. 3 shows the above
scaling factor of UE 1 versus the SNR assuming correlated and
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Fig. 2. Expected values of the soft-estimated symbols of UE 1 when
UE 2 transmits all the possible data symbols from S; MRC, ZF, or
MMSE is adopted at the BS.
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symbols of UE 1 obtained with MRC and ZF versus SNR; correlated
and uncorrelated Rayleigh fading are considered.

uncorrelated Rayleigh fading channels, where the former are
generated as described in Section IV. We observe that, with
uncorrelated channels, the scaling factor exhibits a significant
variation in the range of SNR values, whereas it appears more
consistent in the case of correlated channels.

B. Data Detection Strategies

The exhaustive SUD proposed in [11] maps each soft-
estimated symbol of the target UE to one of the LK expected
values of the soft-estimated symbols based on the minimum
distance criterion. This method is impractical since it performs
an exhaustive search over the set of expected values of the
soft-estimated symbols corresponding to the target UE resulting
from all the possible data symbol vectors, whose size grows
exponentially with the number of UEs. In addition, it does not
take advantage of the interdependence among the soft-estimated
symbols of the interfering UEs as it treats each UE individually.
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Fig. 4. SER versus SNR obtained with different data detection
strategies and different receivers.

the soft-estimated symbols corresponding to the data symbols
with the same phase are hardly distinguishable. In between
these regimes, the right level of AWGN produces a proper
scrambling of the 1-bit quantized signals at the M antennas.
This phenomenon does not manifest with QML, where the
SER decreases with the transmit SNR until it saturates. This
is due to the fact that QML neglects the AWGN altogether,
and its performance does not improve significantly even with
perfect channel state information (CSI). However, the QML
strategy outperforms JD with MRC at high SNR since the
former seeks to pick up the best data symbol vector x while
the latter does not account for the interference among the
different UEs. As demonstrated in Fig. 4, the genie-aided
strategy outperforms JD for any receiver adopted at the BS.
However, the genie-aided strategy cannot be implemented in
practice and is considered only to evaluate how the knowledge
of the data symbols transmitted by the interfering UEs impacts
the data detection performance for the target UE. On the
other hand, JD suffers from the error propagation between
the detected symbols of the UEs, particularly at high SNR.
Remarkably, there is a significant gain for all the data detection
strategies obtained with the ZF and MMSE compared with
their MRC counterparts. Here, the expected values of the soft-
estimated symbols with the ZF/MMSE receivers are computed
via Monte Carlo simulations. As demonstrated in Section III-A,
these expected values can be obtained with simple scaling of
the MRC counterparts in (13). As a result, the SER gain for
the ZF/MMSE receivers is not due to their expected values but
the reduced dispersion of the soft-estimated symbols around
them. The exhaustive SUD method developed in [11] considers
only the MRC receiver, but it can work with any receiver. In
this regard, we have that JD and N -JD with N = 3 provide a
significant boost in comparison with the exhaustive SUD with
the ZF/MMSE receivers. This means that taking advantage of

�10 0 10 20 30 40
10�3

10�2

10�1

100

⇢ [dB]
SE

R

K = 2, M = 128, ⌧ = 31

JD (ZF)
N -JD with N = 1 (ZF)
N -JD with N = 2 (ZF)
N -JD with N = 3 (ZF)

Fig. 5. SER versus SNR obtained with JD and N -JD (both with ZF).
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Fig. 6. SER versus SNR obtained with JD and N -JD (both with ZF).

the interdependence among the soft-estimated symbols of the
interfering UEs gives a notable gain over the data detection
strategies that treat each UE individually.

Considering again K = 2, Fig. 5 illustrates that N -JD
exhibits the same performance with respect to JD with N = 3.
This is because, with K = 2, there is significant overlap among
many of the 256 expected values of the soft-estimated symbols.
In addition, since there are three different amplitude levels
in the 16-QAM constellation, only 3 ⇥ 16 expected values
can be clearly distinguished (see Fig. 1). Fig. 6 extends the
insights of Fig. 5 to the case of K = 3. Here, there are
163 = 4096 different triplets of data symbols transmitted by
the three UEs, each corresponding to a different expected
value [11]. Remarkably, N -JD with N = 4 perfectly matches
JD. This is because we have more distinguishable expected
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requirements on the automatic gain control [NSN21]. Massive MIMO systems with low-resolution data 
converters have been generally studied assuming coarse quantisation at the base station (either in the DACs 
[ATD21] or in the ADCs [ATD21], [AT22], [RAT23a], [RAT23b]) and full-resolution user equipment (UE). 
The extreme scenario where both the transmit- and receive-side are equipped with fully digital massive MIMO 
arrays and 1-bit DACs/ADCs is analysed here, which is referred to in the following as doubly 1-bit quantized 
massive MIMO [ATN+23]. Indeed, combining 1-bit DACs and ADCs leads to a fully digital system with 
minimum RF complexity, cost, and power consumption. Note that the system model considered in this section 
can be considered as an extension of the model in Figure 4-17 by including 1-bit DACs. 

Considering a point-to-point system, the Bussgang decomposition is utilised to unfold the relation between the 
transmitted data symbols (at the input of the transmitter’s 1-bit DACs) and the soft-estimated symbols acquired 
via linear combining of the quantized received signal (at the output of the receiver’s 1-bit ADCs). Assuming 
perfect CSI, a tractable approximation of the mean squared error (MSE) between the transmitted data symbols 
and their soft estimates is derived along with the combining strategy that minimizes it. This approximation is 
accurate in the regime of a large number of transmit antennas. Numerical results show that, despite its 
simplicity, a doubly 1-bit quantized massive MIMO system with very large antenna arrays can deliver an 
impressive performance in terms of MSE and SER, which is not far from that of a massive MIMO system with 
full-resolution DACs and 1-bit ADCs. 

Methodology: Consider a point-to-point doubly 1-bit quantised massive MIMO system where a transmitter, 
equipped with 𝑁 antennas and 1-bit DACs, transmits 𝐾 data streams to a receiver with 𝑀 antennas and 1-bit 
ADCs. Such a point-to-point system may represent, e.g., a wireless backhaul scenario. The system model is 
illustrated in Figure 4-19. 

 
Figure 4-19: Doubly 1-bit quantised massive MIMO system. 

The transmitter aims at conveying the data symbol vector 𝒔 ∈ 𝐂�×1 to the receiver. In this setting, 𝒔 is first 
precoded as 𝒙 = 𝑾𝒔 ∈ 𝑪Q×1, where 𝑾 is the precoding matrix, and then quantised at the 1-bit DACs as 𝒕 =
𝑸𝒕𝒙(𝒙) ∈ 𝐶Q×1, where 𝑸𝒕𝒙(. ) is the 1-bit quantisation function at the DACs. Then, the signal arriving at the 
receiver is 𝒚 = w𝜌𝑯𝒕 + 𝒛 ∈ 𝐶>×1 , where	ρ	is	 the	 signal-to-noise	 ratio	 (SNR),	𝑯 ∈ 𝐶>×�  is the channel 
matrix, and 𝒛 ∈ 𝐶>×1 is the additive white Gaussian noise (AWGN) vector. At the 1-bit ADCs, 𝒚 is quantized 
as 𝒓 = 𝑸𝒓𝒙(𝒚) ∈ 𝐶>×1, which is the signal observed at the receiver and is the result of a double quantisation 
step. Finally, the receiver obtains a soft estimate of 𝒔 via linear combining as 𝒔ï = 𝑽𝐇	𝒓 ∈ 𝐶�×1, where 𝑽 ∈
𝐶>×� is the combining matrix. Perfect CSI is assumed for the design of both the precoding and the combining 
matrix. The MSE between 𝒔 and its soft estimate	𝒔ï	can	be	written	as	ϵ = 	 1

�
𝐸𝒔,𝒛[||𝒔ï − 𝒔||.].	To	obtain	 a	

tractable	 expression	 of	 the	 MSE,	Gaussian data symbols are considered. This allows one to apply the 
Bussgang decomposition to express the doubly 1-bit quantized signal observed at the receiver as a linear 
function of the original transmitted signal. In general, the Bussgang decomposition allows one to write the 
output of a nonlinear system as a scaled version of the input plus an uncorrelated distortion. 

Results: Truly massive antenna arrays at both the transmitter and receiver (e.g., 𝑁,𝑀	 ≥ 1000) are necessary 
to achieve impressive values of the MSE. This is illustrated in Figure 4-20, where 𝜖̃ denotes the approximate 
MSE (which is derived analytically as described above). Assuming 16-PSK data symbols, remarkably small 
SER values can be obtained with truly massive antenna arrays at both the transmitter and receiver, although 
an acceptable SER can be achieved also for moderate array sizes [ATN+23]. In general, the performance of 
the considered doubly 1-bit quantised massive MIMO system is not far from that of a massive MIMO system 
with full-resolution DACs and 1-bit ADCs. In particular, replacing the 1-bit DACs with full-resolution ones 
provides a modest MSE or SER gain at the cost of much higher RF complexity and power consumption at the 
transmitter. It can be observed that, for fixed numbers of antennas, there is an optimal number of data streams: 
on the one hand, judiciously increasing the number of data streams generates a useful scrambling of the 1-bit 
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Figure 1. Diagram of the considered doubly 1-bit quantized massive MIMO system.

and symbol error rate (SER), which is not far from that of a
massive MIMO system with full-resolution DACs and 1-bit
ADCs.

II. SYSTEM MODEL

We consider a point-to-point doubly 1-bit quantized massive
MIMO system, where a transmitter equipped with N antennas
and 1-bit DACs transmits K data streams to a receiver with
M antennas and 1-bit ADCs, with K  min(N,M). Such a
point-to-point system may represent, e.g., a wireless backhaul
scenario; however, the following discussion can be easily
extended to a multi-user uplink or downlink scenario. To model
the 1-bit DACs and ADCs, we introduce the 1-bit quantization
function QA(·) : CB⇥1 ! QA, with QA ,

p⌘A
2
{±1± j}B⇥1

and

QA(b) ,
r

⌘A

2

⇣
sgn

�
Re[b]

�
+ j sgn

�
Im[b]

�⌘
. (1)

Note that the output of the 1-bit quantization function is a
vector of scaled quadrature phase-shift keying (QPSK) symbols.
In the following, we use the subscripts A = TX and A = RX
to indicate “transmitter” and “receiver”, respectively.

Let H 2 CM⇥N denote the channel matrix between the
transmitter and the receiver. In this paper, we assume that H
is perfectly known at both the transmitter and receiver, and
we leave the analysis with imperfect CSI for future work.
The transmitter aims at conveying the data symbol vector s 2
CK⇥1 to the receiver. As in [4], [8], we consider a quantized
linear precoding strategy, whereby the precoding matrix is
designed based on H and independently of s and the subsequent
quantization step.1 In this setting, s is first precoded as

x , Ws 2 CN⇥1 (2)

where W 2 CN⇥K is the precoding matrix, and then quantized
at the 1-bit DACs as

t , QTX(x). (3)

Here, the scaling factor ⌘TX of the 1-bit quantization function
in (1) is fixed as ⌘TX = 1

N to satisfy the power constraint
ktk2 = 1.

Subsequently, the analog signal t is transmitted over the
channel with transmit power ⇢ and the signal arriving at the
receiver is given by

y , p
⇢Ht+ z 2 CM⇥1 (4)

where z ⇠ CN (0, IM ) is a vector of additive white Gaussian
noise (AWGN). Since the AWGN has unit variance, ⇢ can be

1An alternative approach, which goes beyond the scope of this paper, is
symbol-level precoding, whereby the analog signal at the output of the 1-bit
DACs is designed based on H and s [7]. Symbol-level precoding outperforms
its quantized linear counterpart at the cost of higher complexity.

interpreted as the transmit signal-to-noise ratio (SNR). Then,
y is quantized at the 1-bit ADCs as

r , QRX(y) = QRX

�p
⇢HQTX(Ws) + z

�
. (5)

Here, the scaling factor ⌘RX of the 1-bit quantization function
in (1) is fixed as ⌘RX = ⇢+1 so that the element-wise variance
of the output coincides with that of the input when the channel
elements have unit variance and N ! 1 (see (15) in the
following). Note that the doubly 1-bit quantized signal in (5) is
what is observed at the receiver. Finally, the receiver acquires
a soft estimate of s via linear combining of the digital signal
r as

ŝ , V
H
r 2 CK⇥1 (6)

where V 2 CM⇥K is the combining matrix.
In this paper, we consider the MSE between s and its soft

estimate ŝ in (6) as a performance metric, which is given by

" , 1

K
Es,z[ks� ŝk2]. (7)

We observe that deriving the above MSE requires obtaining a
tractable expression for r in (5) as a function of s.

III. LINEARIZATION VIA THE BUSSGANG DECOMPOSITION

In this section, we consider Gaussian data symbols, i.e.,
s ⇠ CN (0, IK). Then, we express the doubly 1-bit quantized
signal observed at the receiver as a linear function using the
Bussgang decomposition [13], which allows one to write the
output of a nonlinear system as a scaled version of the input
plus an uncorrelated distortion. Finally, we derive a tractable
approximation of the MSE in (7).

A. Linearization at the Transmitter

Let us define

Cx , Es[xx
H] = WW

H 2 CN⇥N , (8)
Ct , Es[tt

H] 2 CN⇥N . (9)

Then, we use the Bussgang decomposition to linearize t in (3)
with respect to x in (2) (and, thus, with respect to s) as

t = GTXx+ dTX (10)

where dTX 2 CN⇥1 is a zero-mean, non-Gaussian distortion
vector that is uncorrelated with x (and, obviously, with s) and

GTX , Es[tx
H]C�1

x 2 CN⇥N (11)

is the Bussgang gain matrix. Indeed, GTXx and dTX are the
minimum MSE estimate of t given x and the corresponding
estimation error, respectively. Moreover, according to (10), Ct

in (9) can be obtained as

Ct = GTXCxGTX +CdTX (12)
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quantised signals at the 𝑀 receive antennas; on the other hand, the inter-stream interference becomes dominant 
for large values of 𝐾 [ATN+23]. 

  
(a) MSE for 1-bit DACs/ADCs and full-resolution 

DACs/1-bit ADCs versus the number of 
transmit/receive antennas 

(b) approximate MSE for 1-bit DACs/ADCs versus 
the number of data streams 

Figure 4-20: Evaluation results of doubly 1-bit quantised massive MIMO. 

4.2.3 Energy efficient beamforming architecture and deployment for sub-THz 
Problem statement: Scope of this study is the spectral and energy efficiency trade-off of different 
beamforming architectures and BS placements, with focus on indoor scenarios and hybrid beamforming at the 
BS. With system level simulations the coverage and throughput of different deployment arrangements with 
different numbers of BS and randomly distributed UEs is evaluated. To assess the related energy efficiency, 
the power consumption is derived with a refined power consumption model based on that introduced in 
[HW21]. The expected outcome is to be in the position to derive most efficient deployment in terms of meeting 
coverage/throughput requirements with best energy efficiency. 

Methodology: An indoor scenario with a size of 30m	 × 	60m is considered Figure 4-21. It represents a 
generalized assessment scenario reflecting shopping malls or large conference or office areas. The intention is 
to match the scenarios for which channel measurements are available [HEX21-D22]. Base stations are located 
equally spaced at the walls of the longer side at a height of 4 meters and transmitting towards the room. In the 
initial scenario 8 BS are applied which transmit with a grid of beams (GoB) of 4 × 4 beams. For a fixed number 
of randomly distributed UEs (4, 8 and 16) the average UE throughput for different transmit power of the BS, 
the number of BS and the number of UEs is analysed. A first coarse power consumption assessment is given.    

 
Figure 4-21: Indoor scenario with multiple BS used for assessment 
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Figure 2. MSE for 1-bit DACs/ADCs and full-resolution DACs/1-bit ADCs
versus number of transmit/receive antennas. The true MSE " is obtained via
Monte Carlo simulations.

400 576 784 1024 1296 1600
0.05

0.1

0.15

0.2

N

"̃

K = 16, ⇢ = 10 dB

M = 400

M = 1024

M = 1600

Figure 3. Approximate MSE for 1-bit DACs/ADCs versus number of transmit
antennas for different numbers of receive antennas. The dotted curves are
obtained by switching N and M .

that their elements have unit variance and the pathloss is
incorporated into the transmit SNR ⇢. The following numerical
results are obtained by averaging over 103 independent channel
realizations. For each realization of H, the precoding matrix W

comprises the K principal right eigenvectors of H, whereas the
combining matrix V is computed as in (23), which minimizes
the approximate MSE in (22). The values of the simulation
parameters N , M , K, and ⇢ are reported above each figure.

Figure 2 plots the MSE versus the number of transmit/receive
antennas, with N = M . The approximate MSE "̃ in (22)
behaves as a tight upper bound on the true MSE " in (7),
where the latter is obtained via Monte Carlo simulations with
103 independent realizations of the data symbol vector s for
each realization of H. Furthermore, we observe that truly
massive antenna arrays at both the transmitter and receiver are
necessary to achieve impressive values of the MSE, e.g., about
5⇥10�2 for N = M = 1600. Nonetheless, the performance of
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Figure 4. Approximate MSE for 1-bit DACs/ADCs versus number of data
streams for different numbers of transmit/receive antennas.

the considered doubly 1-bit quantized massive MIMO system
is not far from that of a massive MIMO system with full-
resolution DACs and 1-bit ADCs. Specifically, replacing the
1-bit DACs with full-resolution ones reduces the MSE not even
by a factor of two at the cost of much higher RF complexity
and power consumption at the transmitter.

Figure 3 illustrates the approximate MSE versus the number
of transmit antennas for different numbers of receive antennas
(solid lines) and versus the number of receive antennas for
different numbers of transmit antennas (dotted lines). We
observe that increasing the number of either transmit or receive
antennas produces roughly the same effect. However, since
the combining matrix is optimized for a given channel and
precoding matrix, the second option provides slightly better
results in this case. Figure 4 depicts the approximate MSE
versus the number of data streams for different numbers of
transmit/receive antennas, with N = M . For each configuration,
there is an optimal number of data streams: on the one hand,
judiciously increasing the number of data streams generates
a useful scrambling of the 1-bit quantized signals at the
M receive antennas [9]; on the other hand, the inter-stream
interference becomes dominant for large values of K.

V. DATA DETECTION

In this section, we briefly evaluate the data detection
performance with non-Gaussian data symbols in terms of
SER. In this respect, we point out that x in (2) may be
approximately Gaussian even with non-Gaussian data symbols
when K is large. Figure 5 plots the soft-estimated symbols
with 16-PSK (phase-shift keying) data symbols for different
numbers of transmit/receive antennas, with N = M . As
the number of antennas increases, the dispersion of the soft-
estimated symbols around the transmitted data symbols reduces
noticeably, which translates into an improved SER performance.
For N = M = 1600, a remarkable SER in the order of 10�4

is obtained. Nonetheless, an acceptable SER (considering the
absence of coding) in the order of 10�2 is achieved already
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Figure 2. MSE for 1-bit DACs/ADCs and full-resolution DACs/1-bit ADCs
versus number of transmit/receive antennas. The true MSE " is obtained via
Monte Carlo simulations.
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that their elements have unit variance and the pathloss is
incorporated into the transmit SNR ⇢. The following numerical
results are obtained by averaging over 103 independent channel
realizations. For each realization of H, the precoding matrix W

comprises the K principal right eigenvectors of H, whereas the
combining matrix V is computed as in (23), which minimizes
the approximate MSE in (22). The values of the simulation
parameters N , M , K, and ⇢ are reported above each figure.

Figure 2 plots the MSE versus the number of transmit/receive
antennas, with N = M . The approximate MSE "̃ in (22)
behaves as a tight upper bound on the true MSE " in (7),
where the latter is obtained via Monte Carlo simulations with
103 independent realizations of the data symbol vector s for
each realization of H. Furthermore, we observe that truly
massive antenna arrays at both the transmitter and receiver are
necessary to achieve impressive values of the MSE, e.g., about
5⇥10�2 for N = M = 1600. Nonetheless, the performance of
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Figure 4. Approximate MSE for 1-bit DACs/ADCs versus number of data
streams for different numbers of transmit/receive antennas.

the considered doubly 1-bit quantized massive MIMO system
is not far from that of a massive MIMO system with full-
resolution DACs and 1-bit ADCs. Specifically, replacing the
1-bit DACs with full-resolution ones reduces the MSE not even
by a factor of two at the cost of much higher RF complexity
and power consumption at the transmitter.

Figure 3 illustrates the approximate MSE versus the number
of transmit antennas for different numbers of receive antennas
(solid lines) and versus the number of receive antennas for
different numbers of transmit antennas (dotted lines). We
observe that increasing the number of either transmit or receive
antennas produces roughly the same effect. However, since
the combining matrix is optimized for a given channel and
precoding matrix, the second option provides slightly better
results in this case. Figure 4 depicts the approximate MSE
versus the number of data streams for different numbers of
transmit/receive antennas, with N = M . For each configuration,
there is an optimal number of data streams: on the one hand,
judiciously increasing the number of data streams generates
a useful scrambling of the 1-bit quantized signals at the
M receive antennas [9]; on the other hand, the inter-stream
interference becomes dominant for large values of K.

V. DATA DETECTION

In this section, we briefly evaluate the data detection
performance with non-Gaussian data symbols in terms of
SER. In this respect, we point out that x in (2) may be
approximately Gaussian even with non-Gaussian data symbols
when K is large. Figure 5 plots the soft-estimated symbols
with 16-PSK (phase-shift keying) data symbols for different
numbers of transmit/receive antennas, with N = M . As
the number of antennas increases, the dispersion of the soft-
estimated symbols around the transmitted data symbols reduces
noticeably, which translates into an improved SER performance.
For N = M = 1600, a remarkable SER in the order of 10�4

is obtained. Nonetheless, an acceptable SER (considering the
absence of coding) in the order of 10�2 is achieved already
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Assumptions: For this analysis basic SINR evaluations are simulated, based on transmit power of the BS, 
antenna characteristics (Uniform rectangular array, with selection of ideal beam from a GoB) and a 3GPP 
channel model adapted to 140 GHz based on Hexa-X measurements from Aalto University [HEX21-D22] 
following the methodology described in the section on channel modelling of this deliverable. The assumed 
carrier frequency is 144 GHz, the signal bandwidth is approximately 4 GHz.   

 
8 simultaneous UEs 16 simultaneous UEs 

Figure 4-22: Throughput CDFs for 8 and 16 UEs within simulation area, varying BS transmit power (TXP). 

Results: Initial simulations show the UE throughput CDFs for 8 and 16 UEs within the covered area, with the 
transmit power (txp17 = 17dBm … txp35 = 35 dBm) and the number of base stations (4 or 8 BS) as parameter. 
The mechanical downtilt of the antenna is 23 degrees (indicated as mdt23 in the figures). 

Figure 4-22 indicates that the deployment with 8 BS and a transmit power of 17 dBm per BS (red dashed line) 
shows similar coverage and throughput of the deployment with 4 BS and a transmit power of 29 dBm (solid 
blue line). This effect is even larger for an increasing number of UEs. On the right part of Figure 4-22 the 4 
BS with 35 dBm transmit power (black solid line) serve the 16 UEs with similar throughput performance of 8 
BS, but they need only 17 dBm transmit power. The difference in transmit power per BS between deployments 
with 4 BS and 8 BS is 12 dB per BS for 8 UEs and 18 dB per BS for 16 UEs. Taking into account twice the 
number of BS, there is still a benefit of 9 dB and 15 dB for the 8-BS-deployment.  

A very coarse assessment of the related power consumption can be done based on the power amplifiers (PAs) 
only, since they are the components contributing most to the power consumption of the radio frontend.   
Assuming a (still optimistic) PA efficiency of 0.1 (10%), the additional power consumption of 4 BS compared 
to 8 BS for the 8UE case is roughly 27 W: 

17	𝑑𝐵𝑚	 ≜ 50	𝑚𝑊, 8 ∙ 50	𝑚𝑊/	0.1 = 𝟒	𝑾,			29	𝑑𝐵𝑚 ≜ 794	𝑚𝑊, 4	 ∙ 794	𝑚𝑊/	0.1 = 	𝟑𝟏. 𝟕	𝑾		 

For the 16UE case a similar consideration leads to a difference of about 122 W: 

17	𝑑𝐵𝑚	 ≜ 50	𝑚𝑊, 8 ∙ 50	𝑚𝑊	/	0.1 = 𝟒	𝑾,			35	𝑑𝐵𝑚 ≜ 3.16	𝑊, 4	 ∙ 3.16	𝑊/	0.1 = 	𝟏𝟐𝟔	𝑾			

However, further impacts need to be considered for a more accurate analysis, like the trade-off between number 
of BS, the impact of hybrid arrays with analogue GoB per subpanel, and the related signal processing. 
Therefore, the existing power consumption model needs to be enhanced to cover all these effects. Further 
simulations are also needed to analyse impacts of various sub-THz specific design aspects and consider them 
in power consumption evaluation. This is still subject to ongoing work.  

4.2.4 MU-MIMO optimization in diverse device scenarios 
Problem statement: MU-MIMO is a key tool for increasing the capacity of cell or user groups, using multiple 
antennas at both the transmitter and receiver, and allowing multiple users to access simultaneously the same 
channel. Since its conception [T99], theoretical exploration of practical systems [SPS+04], [PS08], and of 
efficient decoding of multi-user transmissions [YH15], the important question in modern large MU-MIMO 
systems has moved onto efficient learning and delivery of the channel at both BS and UE. 
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This work focuses on DL MU-MIMO for time-division duplex (TDD) scenario, where challenges include the 
accurate channel knowledge at BS due to weak UE transmit power and impracticality of frequent updates, the 
communication with different users in a way that reduces or eliminates interference among them, as well as 
the complexity (both hardware and computational) originating from multiple antennas and implementation of 
MU-MIMO schemes. These specific challenges will be significantly augmented in expected 6G deployments 
of ~10 devices per m2, where a BS will have to concurrently deal with several UEs of diverse architecture 
(antenna number, hybrid analogue-digital array architecture, BW capability, etc.) and a vast amount of user 
antennas in total.  The full optimization of all DL MU-MIMO scheme parameters (e.g., precoding, channel 
estimation, feedback, etc.) will be prohibitively difficult.  

Methodology: The aim of this work is to investigate intelligent optimization methods and trade-offs to deliver 
required performance but also reduce the computational cost (and related energy consumption) on the BS and 
UE sides. To this end, the approach of dimensionality reduction via “effective antennas” (EAs) has been 
followed (initially introduced in [SSH04] but for number of EAs equal to information layers per UE). The term 
EA, for receiver (RX) or transmitter (TX) antenna array, is defined as a set of linear combinations over RX or 
TX array with the purpose of transforming the actual channel into more tangible effective channel related to 
virtual EAs (instead of physical antennas). These “clean” from interference channels can be then the aim for 
the MU-MIMO DL precoder. AI/ML tools can be used together with the flexible EA approach to address 
computationally intensive steps within the communication procedure and optimise trade-offs between system 
performance and complexity/energy cost on the BS and UE sides. The general methodology is represented in 
Figure 4-23. 

It is envisioned that development of flexible EAs approach will allow to solve fundamental MU-MIMO 
problems, allowing for practical implementations, including:  

• incorporate very large and diverse arrays into MU-MIMO (diverse in number of antennas, array 
architectures, ability to possess different number of RX and TX antennas).  

• speed up the UE-BS communication for channel knowledge and update (since only EAs channels are 
needed to be delivered to the BS).  

• incorporate the outer cell interference rejection inside dimensionality reductions and alleviate users in 
the cell boundary or in dense small cell deployments from interference limitations.  

• address the TDD channel ageing problem originating from differently experienced and known channel 
at RX and TX. 

 
Figure 4-23: MU-MIMO optimization in diverse device scenarios using dimensionality reduction via flexible 

effective antennas (EA) approach. 

Results: Main progress in this work so far includes the development of the flexible EA concept as a generalised 
dimensionality reduction at arrays for DL MU-MIMO communication in TDD. Preliminary numerical 
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simulations of the interference rejection scenario have been also run to confirm the importance and potential 
of optimizations using the proposed approach. Detailed description of the system model, the mathematical 
formulations and the initial results is provided in Appendix A.2.3. The performance comparison among 
different single-user MIMO (SU-MIMO) systems, with and without dimensionality reduction, shows 
significant gain potential from an optimized EA approach. AI/ML tools can help to harness fully this potential 
when system dimensions and computational complexity increase. In next steps of this work, it is planned to 
focus on specific AI- AI-assisted optimisation scenarios (e.g., case of TX eAs=RX EAs which would allow to 
address the channel ageing problem in TDD systems) and investigate the respective performance trade-offs 
under various practical assumptions. 

4.2.5 Hybrid analogue-digital architectures – Link-level signal modelling 
Problem statement: In 5G systems, the general MIMO precoding architecture is a hybrid scheme including a 
baseband digital part and an analogue part, as illustrated by Figure 4-24. Digital precoding offers flexibility 
but requires a dedicated transceiver chain per antenna element. Nevertheless, at high frequencies such as in 
mmWave and sub-THz contexts, the closely spaced antenna elements, resulting from the shorter wavelengths, 
pose challenges in allocating physical space for individual RF chains. The implementation of RF chains, which 
includes components like power amplifiers, becomes impractical and costly. As a result, hybrid precoding has 
emerged as a preferred solution in mmWave contexts. Hybrid precoding combines baseband digital processing 
with analogue components, enabling a more efficient utilization of hardware resources while still achieving 
the desired performance. This approach not only addresses the physical space limitations but also helps 
mitigate the high costs associated with RF chains [AMG+14]. 

 

 
Figure 4-24: General hybrid MIMO precoding. 

Methodology: This section presents possible hybrid beamforming solutions for mmWave / sub-THz 
communications. Their performance will be evaluated in a future deliverable, through comprehensive 
simulations. The streams of complex symbols at the spatial layers are first multiplied with a baseband 
frequency selective digital precoder, before OFDM modulation. The antenna ports are logical antenna from 
the receiver point of view, linked with reference signals (e.g., CSI- reference signal (RS)). A two-stage 
virtualization then applies. The first stage maps the antenna ports to the transceivers units (TXRU), each one 
including a digital to analogue converter. The second virtualization maps the TXRUs to the antenna elements 
(AE) via an analogue precoder applied to the time-domain signal, the waves are then transmitted in a preferred 
direction (beam) thanks to phase shifters. The analogue precoder can be configured with fully or partially 
connected antenna array structures. 

The hybrid MIMO precoding architecture proposed in this study is shown by Figure 4-25. The antenna panel 
is either single polarized or cross-polarized, and one spatial layer is assumed per polarization. In case of cross-
polarization, half of the AE corresponds to a first polarization slant angle, the other half corresponds to a 
second polarization slant angle, orthogonal to the first one. As for the antenna port-to-TXRU virtualization, a 
one-to-one mapping is assumed in this study [36.897] [NKA19]. 
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Figure 4-25: Proposed hybrid MIMO precoding. 

The analogue beamforming WA is first optimized for the MIMO channel frequency responses H(k), across the 
whole bandwidth. Then, the digital precoding is optimized at each subcarrier frequency k, based on the 
effective channel matrix defined by 𝑯;��(𝑘) = 𝑯(𝑘)𝑾�. 

In a future deliverable, the performance will be evaluated using the link-level simulation tool depicted in 
Section 10.1, specifically in terms of BER vs. SNR. 

4.2.6 Multi-antenna location-dependent coded caching 
Problem statement: New data-intensive services like wireless extended reality (XR) applications driven by 
5G and beyond demand stringent quality of service (QoS), requiring both low latency (<10 milliseconds) and 
high throughput (6.37 - 95.55 Gbps). Meeting these demands necessitates more advanced solutions beyond 
simply increasing bandwidth. Coded caching (CC), introduced by Maddah-Ali and Niesen in 2014 [MN14], 
has garnered attention for its superior global caching gain compared to traditional schemes, achieved through 
intelligent utilization of aggregate cache memory across the network. This scalability appeals particularly to 
multi-user collaborative scenarios like XR applications, with CC also leveraging spatial multiplexing gains 
from multi-antenna transmissions. However, there is a research gap in applying multi-antenna CC techniques 
to XR setups, especially in exploiting their location-dependent content access characteristics. 

Methodology: In a wireless XR setting with multi-antenna transmitters and single-antenna users, user mobility 
and location-dependent content requests result in a significant multimedia traffic volume, requiring guaranteed 
QoS across the environment. To address this, a location-dependent memory allocation strategy is implemented 
based on predicted data rates to reduce the delivery time at each location, reflecting wireless connectivity 
quality. This differs from conventional CC methods, where equal memory portions are assigned to all files, 
necessitating a new packet generation approach to accommodate varying cache ratios. Additionally, a multicast 
beamforming scheme with multi-rate modulation is proposed to simultaneously leverage global caching and 
multiplexing gains, thereby enhancing QoS compared to existing methods. 

 

Figure 4-26: An XR application environment with 3 users and 8 single transmission units (STUs). The black bar 
below each user shows the amount of cached data based on the connectivity conditions. 

⋮

⋮
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Methodology: In a wireless XR setting with multi-antenna transmitters and single-antenna users, user mobility 
and location-dependent content requests result in a significant multimedia traffic volume, requiring guaranteed 
QoS across the environment. To address this, a location-dependent memory allocation strategy is implemented 
based on predicted data rates to reduce the delivery time at each location, reflecting wireless connectivity 
quality. This differs from conventional CC methods, where equal memory portions are assigned to all files, 
necessitating a new packet generation approach to accommodate varying cache ratios. Additionally, a multicast 
beamforming scheme with multi-rate modulation is proposed to simultaneously leverage global caching and 
multiplexing gains, thereby enhancing QoS compared to existing methods. 

An XR application in a bounded 𝑁 × 𝑁 m² room, where a different 3D image is needed to rebuild the the field 
of view (FoV) in every tile of size 1x1 m², resulting in 𝑆 = 𝑁. STUs. 

A transmitter with 𝐿 antennas and spatial multiplexing gain of 𝛼 ≤ 𝐿	, located in the middle of the room on 
the ceiling. 

The small-scale fading of the channel is assumed to follow Rayleigh distribution. 

The path loss for a user at state 𝑠  ∈ [𝑆] is modelled as:  

𝑃𝐿(𝑠) = 32.4[𝑑𝐵] + 20 log1�(𝑓) + 10𝜂 log1�(𝑑H) + 𝜁, (4-7) 

where 𝑑H shows the distance between the center of the state 𝑠	 and the transmitter, 𝜂 = 3 denotes the path-loss 
exponent, 𝑓 represents frequency, and 𝜁 ∼ ℕ(0, 𝜎) models the impact of randomly-placed objects obstructing 
the propagation path between the transmitter and the receivers. 

In this regard, after allocating the memory based on the state, the delivery time of the user can be computed as  
𝑇@ =

�
h(H)

,	 with the state-specific rate 𝑟(𝑠) for a user at state 𝑠	is  

𝑟(𝑠) =
Ω
𝐹
𝐶�𝔼 "log#1 +

𝑃@v𝒉u'v
.

𝑁�
$%	 

(4-8) 

where 𝐶� is a pre-log scaling factor containing any practical overhead, 𝑃@ is the transmission power, Ω is the 
communication bandwidth, and 𝒉u' is the channel vector between the server and a user 𝑘 located in state 𝑠, 
and F is the file size. 

The transmit power is normalized such that the received SNR at the room borders is equal to  0[𝑑𝐵] (ignoring 
the ‘shadowing’ effect 𝜁). Optimal beamformers are assumed to achieve the rate in (5-8).  

Results: Considering the Rayleigh fading channel with pathloss in (5-7), considering the memory allocated 
parameter 𝝓  different methods are proposed to evaluate the content delivery time. The methods are described 
as: 

• Proposed, 𝝓 ≫ 𝜶
𝑲

, w/unicasting, with non-uniform content placement prioritizing the local caching 
gain (i.e., trying to limit the delivery time as much as possible), and delivery by unicasting (i.e., using 
the spatial multiplexing gain only and ignoring coded caching techniques), 

• Proposed, 𝝓 ≫ 𝜶
𝑲

,  with non-uniform content placement prioritizing the local caching gain, and 
delivery by the new, proposed multicast techniques, 

• Proposed, 𝝓 = 𝜶
𝑲

,  , with non-uniform content placement prioritizing the global caching gain (i.e., 
trying to maximize the data rate), and delivery by the new, proposed multicast techniques, 

• MS, with uniform cache placement and classic coded caching content delivery.  

For small 𝜎  values (i.e., less variation in large-scale fading among states), the traditional MS scheme 
outperforms other methods. This is because, in the proposed schemes, the global caching gain is sacrificed for 
a higher local caching gain. However, as 𝜎 becomes larger (i.e., there are more attenuated states), the MS 
scheme performs worse than the proposed schemes. This is because, with larger 𝜎, it is more likely for users 
to experience poor connectivity, increasing the effectiveness of the local caching gain in decreasing the total 
delivery time. 
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Figure 4-27: Average delivery time versus 𝝈, where 

𝑲 = 𝟔, 𝑴
𝑺
= 𝟎. 𝟑𝟑, and 𝜶 = 𝟐. 

Figure 4-28: Average delivery time versus the user 
count 𝑲, where 𝝈 = 𝟏𝟎, 𝑴

𝑺
= 𝟎. 𝟑𝟑, and 𝜶 = 𝟐. 

Considering the effect of the network size 𝐾, since a larger 𝐾 also means more data to be delivered, the 
delivery time generally grows with the number of users. However, since the global caching gains also scale 
with 𝐾, the number of users served in parallel (i.e., the DoF) also increases for larger 𝐾, resulting in an overall 
performance improvement for all the CC-based schemes. 

4.3 RIS-assisted transmission 
Reconfigurable intelligent surface (RIS) is an emerging technology in the field of telecommunications, offering 
a novel way to enhance the performance of wireless networks. These surfaces consist of electronically 
controllable elements that can manipulate electromagnetic waves, allowing for improved signal propagation 
in wireless communication systems. At its core, a RIS is a thin layer of material with many small programmable 
elements. These elements can alter the phase, amplitude, and polarization of incoming radio frequency (RF) 
signals. By doing so, a RIS can effectively control the propagation environment, which is a major shift from 
traditional approaches where the environment is typically considered given and uncontrollable. The primary 
advantage of RIS is its ability to direct or reflect signals to areas that are otherwise hard to reach with direct 
transmissions, such as blocked indoor regions or non-line of sight regions. This can significantly enhance 
signal coverage and reduce dead zones in a network. Moreover, RIS can be used to focus energy more 
efficiently towards intended users, improving the overall energy efficiency of the network. It is expected that 
the RIS to be a candidate for a cost-effective and energy-efficient solution to meet the increasing demand for 
high-speed and reliable wireless communication. This would require extended end-to-end validations to be 
verified. There are challenges regarding the integration of these surfaces into existing and future wireless 
networks which includes developing effective algorithms for dynamic RIS configuration, understanding the 
interaction of RIS with various signal propagation environments, and integrating RIS with other advanced 
technologies like MIMO and beamforming. This section covers methods addressing some of these challenges 
including integration of RIS for D-MIMO and IAB transmissions, channel estimation methods for RIS 
transmissions, and RIS control procedures. 

4.3.1 D-MIMO assisted with RIS  
Problem statement: In evolving 5G and future 6G networks, scalability of D-MIMO systems to large 
networks in a practically feasible way is challenging. Exploitation of cost-effective and energy-efficient 
dynamic clustering techniques, and densification enablers is crucial for such systems to sustain. RIS is well 
regarded as a low cost, rapidly deployable, energy-efficient candidate offering extra diversity in the spatial 
domain. This work explores RIS-aided multi-AP systems attaining certain prescribed KPIs, while considering 
the energy consumption in the system. 
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Methodology: To understand how RISs can help improve current communications systems, this study 
compares the performance of i) a system consisting of 𝑁 $ = 18  APs, each equipped with 𝑀 $ = 16 
antennas, communicating with 𝑁8¡ = 18 single-antenna UEs, ii) the same system assisted by 𝑁EF# = 18 
RISs, each comprising 𝑀EF# = 64 reflective elements, iii) the system with RISs but with single-antenna APs, 
and iv) the same system as in iii) but with 𝑀EF# = 256. For easy of simulation, it is assumed assume that the 
RISs are always located with LoS to both the AP and the UE they assist. In the initial setup, each UE is served 
by a different AP. When RISs are present, a UE is associated with the nearest RIS to obtain an additional signal 
path. The discrete-time signal received by UE 𝑘, with 𝑘 = 1,… ,𝑁8¡, can be written as 

𝑦! = #𝑃"	&𝒇!,$ + 𝒈!,%𝚽%𝑯%,$,	𝒒$𝑥! + / #𝑃"	&𝒇!,$# + 𝒈!,%#𝚽%#𝑯%#,$#,	𝒒$#𝑥!#
&$%

!#'(
!#)!

+ 𝑛! , (4-9) 

where 𝒇u,: ∈ ℂ>89×1	is the channel vector between AP 𝑚 and UE 𝑘, 𝑯=,: ∈ ℂ>:;<×>89 	denotes the channel 
matrix between AP 𝑚 and RIS 𝑛, 𝚽= = diag(𝜙1, … , 𝜙>:;<) is a diagonal matrix containing phases of the RIS 
reflective elements, where 𝜙v = exp(𝑗𝜃v) and 𝜃v ∈ [0, 2𝜋), for 𝑖 = 1,… ,𝑀EF#, 𝒈u,= ∈ ℂ>:;<×1 is the channel 
vector between RIS 𝑛 and UE 𝑘, and 𝑛u~𝒞𝒩(0, 𝜎.) is a random variable representing the additive noise at 
the receiver of UE 𝑘. AP 𝑚 transmits the complex-valued symbol 𝑥u to UE k, with associated RIS 𝑛, so that 
𝐸[|𝑥u|.] = 𝑃9. Similarly, neighbouring APs transmit 𝑥u¢ to UE 𝑘′, with associated RIS 𝑛′, where it is assumed 
assume that 𝐸�𝑥u𝑥u=

∗ � = 0, for 𝑘 ≠ 𝑘¢. Finally, 𝒒: ∈ ℂ>89×1 denotes the beamforming vector applied by AP 
𝑚, which is assumed to have unit norm, i.e., ||𝒒:|| = 1, for 𝑚 = 1,… ,𝑁 $. The pathloss and large-scale 
fading of the links are generated following the indoor office channel model from 3GPP [38.901]. To jointly 
design the transmit beamformer 𝒒: and the RIS phase matrix 𝚽= associated with UE 𝑘,			the optimization 
method proposed in [ZRS+21] is used, with the consideration to align the phases of the RIS-reflected and the 
direct signal paths. With that, the SINR experienced by UE 𝑘 can be written as 

𝛾u =
𝑃9.𝒇u,: + 𝒈u,=𝚽=𝑯=,:.

.

∑ 𝑃9.𝒇u,:= + 𝒈u,==𝚽==𝑯==,:=.
.Q>?

u=�1,u=£u + 𝜎.
, (4-10) 

where 𝜎. = 𝑘𝑇�𝐵𝐹8¡, with 𝑘 ≈ 1.38 × 102.q J/K is the Boltzmann constant, 𝑇� = 290 K, 𝐵 is the system 
bandwidth in Hz, and 𝐹8¡ is the noise factor of UE 𝑘’s receiver. The SE of the system, in bits/s/Hz, is given 
by  

𝑅 = ª log.(1 + 𝛾u).
Q89

u�1

 (4-11) 

To evaluate the energy efficiency of the investigated RIS-assisted setup, the total dissipated power needs to be 
computed. Based on the model proposed in [HZA+19], the total dissipated power can be calculated as 

𝑃 = 𝑁 $ ⋅ �𝑃9	𝜉 + 𝑃J�C, $ + 𝑃J�C,8¡ +𝑀EF#𝑃J�C,EF#�, (4-12) 

𝑃 = 𝑁 $ ⋅ �𝑃9	𝜉 + 𝑃J�C, $ + 𝑃J�C,8¡ +𝑀EF#𝑃J�C,EF#�,where 1/𝜉 is the efficiency of the APs transmit power 
amplifier, 𝑃J�C, $ is the static power dissipated by one AP, 𝑃J�C,8¡ is the static power dissipated by one UE, 
and 𝑃J�C,EF#, the static power dissipated by one RIS reflective element. The energy efficiency of the system, in 
bits/J, can then be obtained by the expression 

𝜂¡¡ =
𝐵 ⋅ 𝑅
𝑃

=
𝐵 ⋅ ∑ log.(1 + 𝛾u).

Q89
u�1

𝑁 $ ⋅ �𝑃9	𝜉 + 𝑃J�C, $ + 𝑃J�C,8¡ +𝑀EF#𝑃J�C,EF#�
. (4-13) 

Results: Figure 4-29 (a) shows the CDFs of the SINR experienced by the UEs in setups i) through iv). For the 
case of 𝑀 $ = 16-antenna APs, it can be observed that RISs can improve the median SINR from 18 dB to 21 
dB. More importantly, the 10-percentile SINR is improved by about 6 dB.  One can also ask whether RISs can 
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help reduce the size of the AP antenna arrays while attaining some prescribed performance—thereby trading 
expensive antenna arrays for low-cost RIS devices. Setups iii) and iv) attempt to address this question. At least 
up to 𝑀¤¥x = 256 elements, out initial simulations provide a negative answer. Future work may investigate 
whether deploying multiple RISs per cell and optimizing the deployment locations of the RISs, as well as using 
cell clusters, can help close the observed performance gap.  

Figure 4-29 (b) summarizes the initial evaluation of the feasible energy efficiency (EE) gains provided by 
RISs, for the case of single-antenna APs, i.e., 𝑀 $ = 1  and RIS sizes from 𝑀EF# = 20  to 𝑀EF# = 200 
elements. To obtain the curves, the simulation parameters are 𝐵 = 100  MHz, 𝜉 = 1.2 , 𝑃9 = 25  dBm, 
𝑃J�C, $ = 39	dBm and 𝑃J�C,8¡ = 10	dBm [HZA+19]. For the power dissipated by each RIS element, 𝑃J�C,EF#, 
the values .01 dBm, 5 dBm and 10 dBm were selected. These values agree well with the power consumption 
of RIS prototypes reported in [WTL+22]. In particular, implementations of RIS unit cells based on PIN diode 
dissipate in the order of 10 dBm [WTL+22], while CMOS-based implementations only dissipate power when 
the state of the unit cells changes, e.g., during the transient period. The figure shows that even with 𝑃m power 
dissipation values as high as 10 dBm per reflecting element, deploying RISs holds the potential for improving 
the system’s energy efficiency. 

  
(a) SINR experienced by UEs in deployments i) 

through iv) 
b) Average energy efficiency (EE) as a function of 

the number of RIS elements (𝑀KLM) for single-
antenna APs (𝑀NO = 1), 𝐵 = 100 MHz, 𝑃P = 25 

dBm, 𝜉 = 1.2, 𝑃QRS,TU = 39	dBm, 𝑃QRS,VW = 10	dBm. 
Figure 4-29: Performance evaluation of D-MIMO assisted with RIS.    

4.3.2 RIS assisted integrated access and backhaul 
Problem statement: The sub-urban IAB networks have been impacted by the tree foliage on signal 
propagation. The attenuation and scattering of wireless signals caused by leaves and branches can lead to a 
considerable performance degradation in these networks [ITU-P.833-4]. Consequently, it is of utmost 
importance for network designers and operators to adopt innovative strategies, cope with such issues, 
especially in maintaining reliable and sufficient data rates in the backhaul links. RISs due to their unique 
capabilities, can be helpful in bypassing the tree foliage affected direct backhaul links. This work explores 
RIS-aided IAB system attaining certain prescribed KPIs, including service coverage probability.  

Methodology: The work is to optimize the network and address the tree foliage issue in IAB networks, for the 
sub-urban areas, focusing on the backhaul links. In particular, a mmWave channel model is adapted, with 5G 
channel model (5GCM) urban macro (Uma) close in model for pathloss modelling [RXM+17]. Codebook-
based beamforming is used due to its less complexity and better efficiency as it replaces the normal 
beamforming strategy with a comparatively simpler amplitude and phase-changing method. 
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Results: Service coverage probability defined as the fraction of the UEs which have instantaneous UE data 
rates, 𝑅? higher than or equal to a threshold, 𝑅�¦ can described as below is considered as the performance 
metric, 

 𝑆𝑒𝑟𝑣𝑖𝑐𝑒	𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒�h�� = Pr(𝑅? ≥ 𝑅�¦)	. (4-14) 

 
Figure 4-30: Illustration of RIS-assisted IAB scenario in the presence of tree foliage. 

 

Figure 4-31 depicts the service coverage probability as a function of tree depth r for sub-urban use case 
considering in-leaf percentages, i.e., the percentages of leaf cover in the trees of 25% and 75% resembling the 
seasonal variations. Ae see in Figure 4-31 for small r values, the traditional IAB network is depicting similar 
performance to a RIS-aided network. However, as the r becomes larger, the RIS-aided network outperforms 
the IAB only backhauled network. This is because, with larger r it is more likely for the backhaul links to be 
affected by tree foliage than the double path-loss of RIS-aided backhaul link.  

 
Figure 4-31: Service coverage probability as a function of tree-line depth for sub-urban use case. 

4.3.3 Channel estimation for RIS  
Problem statement: Frequent connectivity issues are inherent to millimetre wave (mmWave) vehicular 
communication systems due to severe path loss under blockages. A RIS can be used to improve link quality 
under blockage by establishing a reflected link. However, finding the optimum phase shifts at RIS requires the 
availability of accurate channel state information. Considering a passive RIS, the uplink channel estimation 
schemes rely on the feedback received at the base station by transmitting a pilot sequence to estimate the 
channel.  Further, a large number of reflecting elements are required at RIS to facilitate a satisfactory 
performance, which requires a large pilot overhead. Furthermore, the mobility of vehicles demands frequent 
channel estimation, thus creating an intolerable pilot overhead. This work focusses on uplink channel 
estimation under mobility in an RIS aided millimetre wave communication system. The objective of the study 
is to improve channel estimation accuracy while utilizing fewer pilot resources. 



Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 74 / 218 

 

 

Figure 4-32: An illustration of the RIS aided channel, where UE-BS link is no NLoS and reflected link through 
RIS consists of NLoS components. 

Methodology: As illustrated in Figure 4-32, the uplink channel consists of a NLoS direct channel and a 
reflected channel through RIS which has LoS components. The cascaded channel through RIS can be thought 
of as a controllable scatterer where the gain can be tuned by changing the phase shifts. Considering a mmWave 
scattering channel model, the compound channel at each symbol is represented as function of the RIS channel, 
multipath gains, Doppler shifts of the multipaths, transmitter and receiver antenna azimuth and elevation 
departure and arrival angles of each path (angle of departures – AoDs and angle of arrivals – AoAs), and the 
velocity of the user vehicle. The study considers a pilot sequence corresponding to phase shifts at RIS obtained 
from a codebook. The received pilot symbols are used to estimate the channel parameters. However, the 
resulting optimization problem is non-convex due to the coupling of optimization variables. Still, an 
approximate solution can be found using alternative optimization. However, the accuracy of the solution is 
compromised due to power leakage caused by non-ideal angular grid. Therefore, a machine learning based 
approach is proposed to predict the AoAs. The Figure 4-33 below shows the architecture of the proposed neural 
network. 

 

Figure 4-33: The proposed neural network architecture for RIS channel estimation. 

Results: Channel estimation accuracy is used as the evaluation metric for performance comparison. The results 
compare the normalized mean square error (NMSE) of the direct and RIS channels when using different 
channel estimation algorithms. The DeepMIMO dataset is used to generate channel parameters (i.e., AoAs, 
AoDs and complex path gains) for a system with career frequency 28 GHz.  

Figure 4-34 shows the NMSE performance of the proposed machine learning-based channel estimation 
algorithm (denoted as Algorithm 5 in the figure) in comparison to optimisation-based algorithm (denoted as 
Algorithm 4 in the figure) and the baseline with known AoAs, for stationary and mobile user scenarios. It can 
be observed that the machine learning solution outperform optimisation -based algorithm in both stationary 
and mobile user cases.  
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(a) Direct channel  (a) Reflected channel 

Figure 4-34: Comparison of the NMSE for the proposed for RIS channel estimation. algorithms under stationary 
and mobile channels (Algorithm 4: Optimization based, Algorithm 5: ML-based, Baseline: known AoAs). 

4.3.4 Control procedures for non-radiative RIS 
Problem statement: The focus is on design control procedures for RIS with wireless control. There is a 
distinction between infrastructure RIS and personal RIS, where the latter is assumed to be located close to 
UEs, operate in mmWave or sub-THz spectrum and be transparent or non-transparent to the network. Given 
the considered target use cases of personal RIS and high frequency indoor propagation, the wireless control of 
RIS can be split between the UE, a local RIS controller and a remote controller of RIS whose placement is 
flexible. An investigation is carried out for the options of functionality split to identify the best one from the 
perspective of signalling overhead, latency and implementation complexity.  

Methodology: It is assumed that RIS configuration is selected and provided to RIS by a RIS controller. 
Typically, it is not required for RIS controller to be co-located with RIS, therefore it can be called remote 
controller. The location of remote controller is not specified. The entity that is located at RIS and is responsible 
for a part of RIS control functionality can be called local controller. The study considers two options of control 
functionality split between remote and local RIS controllers. 

In both option it is assumed that RIS is stationary and purely passive, operates in mmWave or sub-THz 
frequency band, local RIS controller has connectivity with the served UE and a remote RIS controller. 

The first option is based on the exchange of control model. The control model means a mathematical formula 
(e.g., an AI/ML model or an algorithm) that takes as an input local information: (relative) position and 
orientation beam information (if available, e.g., SSB) of the served UE, and the state information of RIS such 
as switched on/off RIS elements, RIS orientation and position, etc.) and outputs the RIS reflecting coefficients. 
In this case, remote controller periodically computes a control model and provides it to the local controller. 

Local controller supports the following functionality: 

• Receives control model and UE local information. 
• Combine UE local information with RIS local information. 
• Applies control model to the local information to obtain reflecting coefficients. 
• Applies the reflecting coefficients. 

The period of the local information update is typically shorter than the control model update, which 
reduces the communication overhead of RIS control. 
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Figure 4-35: Block diagram for control split option #1. 

  
 

Figure 4-36: Block diagram for control split option #2. 

The second option is based on the exchange of a pair of a codebook and a control model for UE. By codebook 
an enumerated set of RIS configurations is considered, where each configuration corresponds to a set of 
reflecting coefficients. Control model for UE is a mathematical formula (e.g., an AI/ML model or an algorithm) 
that takes local information as an input and outputs RIS configuration identifier (ID) of the accompanying 
codebook. This split option assumes that remote controller periodically computes a pair of control model for 
UE and a codebook. The codebook is then provided to the local controller, while the control model for UE is 
provided to UEs served by the RIS. 

The expected local controller functionality in this case: 

• Receives codebook and RIS configuration ID. 
• Selects the ID element from the codebook and applies the corresponding reflecting coefficients for the 

RIS. 
• (Optionally) periodically transmits RIS local information to UE. 

Local information is defined the same way as in the split option #1 (described above). Served UE is assumed 
to be capable of receiving a control model for UE, (optionally) RIS local information, and periodically use 
(RIS and UE) local information as an input for the model to obtain RIS configuration ID. In practice, the served 
UE can receive and store multiple control models from different RIS. In this case, UE selects an appropriate 
model after establishing connection with a particular local controller RIS. As in the option #1, the period of 
RIS configuration ID update is typically smaller than the control model update, which reduces the overhead of 
RIS control. 

Results: Qualitative analysis shows that the considered control split has the following advantages compared 
with baseline option without control split: 

1. Reduced communication overhead. In the baseline option, the served UE should provide CSI to RIS 
remote controller, while the remote controller should communicate the decision to the RIS. In the 
considered split options, the remote controller typically makes updates in a much slower rate than RIS 
configuration is updated. The UE communicates the dynamic RIS control information only locally. 



Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 77 / 218 

 

2. Assistance for coverage extension. In the baseline option, it is challenging to use RIS for coverage 
extension. The remote controller does not have CSI information of out-of-coverage UE; thus, a 
complicated beam search procedure is required. In the split option #1 UE and RIS local controller 
communicate locally to enable the UE to provide the information to local RIS controller and configure 
RIS for coverage extension. 

3. Privacy preserving. Many RIS control algorithms are based on positioning information. In this case, 
without a split, UE position should be shared with remote controller which might violate privacy 
preserving requirements. In the considered split options, UE position information is shared only locally 
with RIS, or not shared at all. It is possible to keep position information at UE and share with RIS only 
the best configuration. 

4.3.5 Learn RIS reflecting modulation 
Problem statement: RIS-based communications with reflection modulation (RM) have garnered attention in 
literature as the RIS does not require additional RF chains to modulate information. RM schemes can be 
classified into two methods based on bit-mapping, where the transmitter and the RIS reflecting pattern either 
separately or jointly deliver information, namely, separately mapped RM (SRM) and jointly mapped RM 
(JRM). In SRM, the RIS delivers its own information from its reflection patterns, in addition to reflecting the 
signals coming from the transmitter. In JRM, the RIS and AP jointly deliver information available at the AP. 
In contrast to the conventional RIS where the RIS controller only adjusts the phase shifts depending on the 
channel information, here the RIS controller is actively involved in the transmission. In JRM, since a part of 
information is transmitted via the reflection patterns, the controller needs to have control links to and from 
both the AP and the RIS module to convey corresponding reflection patterns, CSI etc. 

There are numerous SRM schemes explored in literature. Two such schemes are reflection pattern modulation 
(RPM) and quadrature reflection modulation (QRM), proposed by [LZA+21] and [LCW+22] respectively. In 
RPM, a subset of RIS elements is turned off to generate reflection patterns, while in QRM, a subset of RIS 
elements is given a 90-degree phase shift. SRM provides a solution to a specific use case, such as delivering 
some local sensor data available at the RIS. In contrast, the studies on the more general application of JRM are 
scarce.  

The aim of this work is to provide a more scalable, less restricted solution that reduces BER for the more 
general application JRM, such that the RIS reflection patterns and transmit signals are jointly incorporated for 
the constellation design. In cases where the AP and user equipment (UE) direct link is NLoS, JRM can 
effectively deliver information to the user with the aid of the RIS and the joint constellation design. The RIS 
reflection pattern generation methods studied in SRM can be effectively used, thus two solutions are proposed 
and compared: jointly mapped reflection pattern modulation (JRPM) and jointly mapped quadrature RM 
(JQRM). A jointly active and passive beamforming design is also considered. 
 

 
Figure 4-37: The system model for RIS RM. 
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Methodology: A single-user downlink system as shown in Figure 4-37 is studied under the full CSI 
assumption. The joint constellation is designed such that each constellation point comprises of a tuple of a 
transmit signal and a RIS reflection pattern. Thus, the required transmit constellation size can be reduced, 
increasing the adjacent symbol separation. At the receiver, the tuple can be jointly detected with maximum 
likelihood detection. 

The neighbouring RIS elements are grouped to have the same reflection coefficient to improve scalability and 
lower complexity in the design of the constellation and beamforming. The RIS phase shifts are designed to 
align the phase of the effective channel, thus in JQRM, for a given reflection pattern, a group of elements are 
tuned to be orthogonal to the effective channel. In JRPM, a group of elements are turned off. An alternating 
optimization algorithm is used for the jointly active and passive beamforming design. 

Results: In Figure 4-38 , the BER performance of the proposed JQRM and JRPM schemes are compared with 
their respective theoretical upper bounds and equivalent SRM schemes, i.e., QRM and RPM, for single-input 
single-output (SISO) and multiple-input single-output (MISO) systems respectively. Simulations are 
conducted over 100 independent fading blocks, each with a block length of 10000 bits. The AP-UE direct 
channel is assumed to undergo Rayleigh fading while the AP-RIS and RIS-UE links are assumed to be Rician 
fading channels. The RIS elements are split into 4 groups to generate 4 reflection patterns, thus a joint 
constellation with 8-bit symbols only requires 64-QAM transmit signal set, while the separately mapped 
counterparts deliver 6 bits from the AP and 2 bits from the RIS. Given full CSI, maximum likelihood detection 
is performed at the receiver by jointly searching for all the possible tuples in the JRM constellation points. 

Both JQRM and JRPM shows superior BER performance compared to their separately mapped counterparts 
due to higher energy per bit achieved by the joint constellation design. The simulated BER of both JRPM and 
JQRM performs below their respective theoretical upper bounds. Overall, the QRM-based methods outperform 
the RPM-based methods due to the full aperture gain achieved by having all the RIS elements turned on. 

 

 
(a) SISO system (b) MISO system 

 
Figure 4-38: BER performance of learn RIS reflecting modulation. 
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5 Waveforms and modulations  
In modern wireless systems, waveform and modulation schemes are essential for efficient and reliable 
transmission. With these techniques, communication systems can increase spectral efficiency while balancing 
energy constraints. As technology evolves, new applications arise demanding unprecedented data rates 
leveraged mostly by expanding the transmission’s frequency to sub-THz levels. This novel approach will 
substantially increase the system’s bandwidth whilst affecting power consumption, phase noise, and other 
performance factors. In this context, designing innovative waveforms and modulation schemes is fundamental 
for harnessing the potential of future communications systems, regardless of the frequency band.   

Hence, this chapter investigates waveform and modulation candidates for sub-THz communications and new 
enhancements to known techniques. The first section introduces the candidates by analysing 5G NR 
numerology and standardized waveforms, i.e., cyclic prefix orthogonal frequency division multiplexing (CP-
OFDM), and by exploring 1-bit quantized zero crossing modulation (ZXM) and polar and hardware-friendly 
constellations. In the second section, enhancements to waveforms and modulation schemes are proposed, 
including an adaptative multicarrier modulation resistant to Doppler shift and out-of-band emissions, a new 
matrix design for low-density parity check (LDPC) codes, and an optimized delayed bit interleaved coded 
modulation (DBICM). 

5.1 Sub-THz waveform and constellation candidates 
This section analyzes waveform and constellations candidates for sub-THz communications. Here, the 
contributions address some of the main challenges inherent to these frequencies, namely energy efficiency, 
high mobility speed, and phase noise. The first work investigates the waveform candidates for sub-THz 
systems by analyzing their numerology and robustness towards phase noise and reduced energy consumption. 
The second contribution employs ZXM schemes to 1-bit ADC and explores their energy efficiency through an 
optimization problem. Next, new polar constellations are proposed to resist phase noise and high Doppler 
shifts. The last contribution analyzes the feasibility of SC-FDE waveforms over real-world sub-THz 
transceivers. 

5.1.1 Evolution of New Radio numerology and waveforms towards sub-THz 
frequencies 

Problem statement: Current 5G new radio (5G NR) specifications do not cover operation in the sub-THz 
frequencies. This section addresses the changes needed in the 5G NR numerology, such as the subcarrier 
spacing (SCS) and cyclic prefix (CP) length to support communications in the sub-THz frequencies. This 
works also addresses the performance differences between the waveforms already standardized for the 5G NR, 
namely CP-OFDM and discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-
s-OFDM), in the presence of known hardware limitations specific for the sub-THz frequencies. The following 
discussion focuses on three sub-THz specific aspects and their impact on the numerology and waveform 
selection, namely support for the large bandwidth required for Tbps communications, increased need for 
robustness towards phase noise (PN), and compensation of reduced power amplifier (PA) peak output power 
in the form of reduced peak-to-average power ratio (PAPR) of the waveform. More comprehensive study on 
the RF nonidealities in the sub-THz frequencies is given in Hexa-X-II D5.3 [HEX224-D53]. 

Methodology: 5G NR has been designed for scaled numerology, where the bandwidth and the frame structure 
scale according to SCS following the Rel-15 scaling principle [38.211]. This enables easy and flexible 
frequency- and time-domain alignment of different numerologies. Current 3GPP numerology has been 
designed from under 7.125 GHz frequency range (FR1) up to 71 GHz (FR2-1 and FR2-2). For FR2-2, only 
mandatory SCS of 120 kHz has been specified, and 480 kHz and 960 kHz are optionally supported [38.101 
Table 5.3.5-1]. Here, it is assumed that the supported SCSs in sub-THz communications follow the scaling 
principle of 15 kHz, with the multiplier being in the powers of two, corresponding to 120 / 240 / 480 / 960 / 
1920 / 3840 kHz.  

Considering the available bandwidth in the lower sub-THz frequencies, the potential frequency bands in this 
region include especially W-band (75 to 110 GHz) but also D-band (110 to 170 GHz) [XR21]. The largest 
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available bandwidth is at the D-band, spanning total of 12.9 GHz and 151.1 – 164 GHz frequencies. With 264 
physical resource blocks (PRB) and 4096 IFFT size, the SCS of 3840 kHz is capable of providing the occupied 
channel bandwidth (OCB) of 12.17 GHz that just fits the largest available band of 12.9 GHz at the D-band 
(see Appendix A.3.1). 

However, the wider the SCS is, the shorter the symbols become in the time domain. This may not be a problem 
from the inter-symbol interference point-of-view, because narrow beams result in very small delay spreads, 
but an insufficient CP may become a problem for the beam-based transmission, if the beam switching delay is 
assumed to be comparable to CP length. In addition, this may also pose a challenge from RF component group 
delay response perspective. Furthermore, increasing the SCS may have larger impact on the system design as, 
e.g., the scheduling periods become too short and control channel coverage can be degraded [TLP+20].  

Results: Since CP-OFDM and DFT-s-OFDM use multiple orthogonal subcarriers to transmit data, they are 
affected quite similarly by the PN distortion. A major impairment in the sub-THz frequencies compared to 
FR1 and FR2 is the PN, which, when using a frequency multiplier, increases 6 dB for every doubling of the 
carrier frequency [DPS18]. For example, going from 28 GHz to 90 GHz causes a ten-fold increase of PN. 
Thus, the maximum currently supported SCS of 120 kHz for data transmissions may be not enough to facilitate 
the PN. Current 5G NR handles the PN distortion by exploiting phase tracking reference signals (PTRS), which 
are inserted into OFDM or DFT-s-OFDM symbols to be able to track the PN variations. PN causes common 
phase error (CPE) which affects all subcarriers similarly [SLI+19]. However, the significantly higher PN in 
the considered frequency range will cause also inter-carrier interference (ICI), which comes from the 
convolution of the PN frequency response with the data bearing subcarriers. The OFDM uses distributed 
frequency-domain PTRSs, which enable the receiver to compensate only the common phase error part of the 
PN. This leads to degraded performance with 5G NR Rel-15 numerology when considering communications 
in sub-THz frequencies. The degrading effect of ICI can be mitigated by increasing the SCS or by applying 
somewhat more complex ICI compensation which can be done either with distributed or block-based PTRS 
[TPS+20]. The currently supported waveforms CP-OFDM and DFT-s-OFDM perform differently under 
different PTRS designs and related PN mitigation techniques and one of the main design challenges is the 
choice of the waveform and numerology, together with effective PN compensation methods. However, the 
simulations demonstrate that SCS of 960 kHz and 1920 kHz can facilitate the PN for both CP-OFDM and 
DFT-s-OFDM in the sub-THz frequencies (see Appendix A.3.2). 

Besides PN, another major drawback requiring consideration in sub-THz frequencies is the decreased PA 
efficiency in higher carrier frequencies. For example, in [38.803 Section 6.1.9.1], it is shown that the output 
power of PAs for a given integrated circuit technology roughly degrades by 20 dB per decade. This imposes a 
significant need to support waveforms and modulations that allow to achieve very low PAPR in order to 
achieve better power efficiency in base station (BS) and user equipment (UE) side, and to achieve the targeted 
maximum transmitted power levels which in turn translates directly into coverage. It is well known that CP-
OFDM signal has larger PAPR than DFT-s-OFDM [DPS18], especially at lower modulation orders, which 
emphasizes the importance of supporting DFT-s-OFDM in downlink and uplink for sub-THz communications. 
Depending on the modulation order, CP-OFDM requires approximately from 3 dB to 5 dB more output power 
back-off, indicating that DFT-s-OFDM is able to provide significantly better coverage [TPS+20] (see 
Appendix A.3.3). 

Finally, the above discussion demonstrates that in addition to CP-OFDM, it would be very beneficial to support 
discrete Fourier transform spread frequency division multiple access (DFT-s-OFDMA also for downlink (DL) 
sub-THz communications. DFT-s-OFDM provides consistently better link performance under phase noise with 
only minor changes in the Rel-15 PTRS design. The DFT-s-OFDM waveform can also enable better coverage, 
because it provides larger power amplifier output power than CP-OFDM, especially with low-order 
modulations. For the overall numerology, it is also shown that SCSs from 960 kHz to 1920 kHz can provide a 
good baseline for sub-THz communications, allowing Tbps communications by supporting large bandwidths, 
and providing necessary enhancement in the PN mitigation for both CP-OFDM and DFT-s-OFDM waveforms. 
Although 3840 kHz SCS provides widest contiguous bandwidth still available in W- and D-bands, 
insufficiently short CP may become a problem, and thus a more conservative value of 1920 kHz should be 
taken as the starting point for the first efforts to design a system numerology for sub-THz communications. 
Increasing CP length dynamically might solve this problem, but it comes with a cost of increased overhead, 
complexity, and processing times.  
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5.1.2 Energy-efficiency of 1-bit quantized zero crossing modulation 
Problem statement: The usage of high bandwidths at sub-THz carriers necessitates high sampling 
frequencies. For sampling frequencies above 300 MHz, the power consumption of the analogue-to-digital 
converter (ADC) increases quadratically with the signal bandwidth [Mur23], leading to a potentially 
problematic increase in power consumption. However, as the ADC power consumption is exponentially 
dependent on the ADC resolution, decreasing the ADC resolution can potentially mitigate the increase in 
power consumption due to higher sampling frequencies. Reducing the ADC resolution to a minimum of 1 bit, 
essentially shifts the information-carrying signal domain from the amplitude to the time domain.  

Addressing the ADC power consumption challenge with 1-bit quantizers involves rethinking modulation 
design. Hence, zero-crossing modulation (ZXM) [FDB+19] is considered, which utilizes a combination of 
runlength-limited (RLL) sequences and faster-than-Nyquist signalling [LDG18], matching the shift from 
amplitude resolution to time resolution at the ADC. 

 
Figure 5-1: Considered front-end components. 

In this regard, the scope is to estimate the advantage in energy efficiency of the ZXM approach in comparison 
to conventional 𝑀 quadrature amplitude modulation (M-QAM) with high ADC amplitude resolution for sub-
THz frequencies. For both modulation schemes, the achievable spectral efficiency is considered together with 
hardware power models for the corresponding analogue radio front ends. To evaluate ZXM and QAM 
transceiver power consumption, a closer examination of analogue front-end components is necessary. Front-
end components exhibit dependencies on various parameters, e.g., the system bandwidth, the required transmit 
power, etc., influencing the overall power consumption. Expressions for receiver and transmitter power 
consumption, considering the mentioned dependencies, are based on previous analysis [GDS+24]. The 
components considered can be seen in Figure 5-1, while the filters are assumed to be passive, thus, consuming 
no power. The required frontend components for ZXM and QAM are identical, although ZXM requires 
temporally oversampled 1-bit ADCs, while M-QAM requires 1

.
log.𝑀  bit ADCs, as hard demapping is 

assumed. For QAM, 𝑀 describes the constellation size, and for ZXM 𝑀�i describes the faster-than-Nyquist 
signalling factor. 

Methodology: To estimate the energy consumption of the frontend components, a power consumption model 
similar to the one described in [GDS+24] is used except for the assumption, that the power consumption of the 
DACs scales linearly with the FTN factor 𝑀�i used in ZXM. As the ADC needs to at least match the rate of 
the DAC, it is required require that the ADC samples at the same rate as the DAC and, thus, assume that the 
ADC power consumption scales linearly with 𝑀�i as well.  

The dependencies of the power consumption of the frontend components, discussed in more detail in 
[GDS+24], can be summarized as follows. As the data rate is assumed to be a given quantity and different 
modulation schemes exhibit different achievable spectral efficiencies, the required receiver SNR is, thus, in 
direct relation with the required rate, the achievable spectral efficiency, and the available bandwidth. For the 
DAC, a binary-weighted current-steering DAC is assumed, whose power consumption depends on the 
bandwidth and its resolution in bits. As there are no general equations regarding the power consumption of 
local oscillators and mixers, literature-based measurements are used. As such, the power consumption of 
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mixers and LOs is fixed, identical for both modulation schemes, and not influenced by the optimization. The 
consumption of the power amplifier is modelled based on the power-added efficiency (PAE) and is dependent 
on the transmit power and the carrier frequency. For the LNA, the gain is assumed sufficiently high and that 
non-linear distortions are negligible, allowing us to use a bandwidth-dependent power model, depending on 
the bandwidth, gain and noise figure. For the ADC, the model is based on the Walden Figure-of-merit and a 
survey containing several ADCs [Mur23]. The ADC power consumption is, thus, dependent on bandwidth and 
the ADC resolution. 

Using the models for the power consumption of the transmitter  𝑃9§  and receiver 𝑃E§  [GDS+24], a 
minimization of the energy per bit  𝐸�v� is performed over the transmit power 𝑃@ and the bandwidth B given a 
required data rate 𝑅. For ZXM the achievable spectral efficiencies 𝑆 depending on the received signal-to-noise 
ratio (SNR) were evaluated using Monte-Carlo simulations, while the spectral efficiency for hard demapping 
QAM is evaluated analytically. As such this analysis incorporates quantization noise effects.  To account for 
frequency-dependent path loss, the standard path loss model, also employed in [GDS+24], is used, which is 
based on the Friis transmission formula. From a mathematical perspective, the following optimization is 
performed 

min𝐸�v� =
𝑃@i + 𝑃¤i

𝑅
	

𝑠. 𝑡.						𝑅 = 𝐵	𝑆	
													0 ≤ 𝑃@ < 𝑃&B§	
													0 ≤ 𝐵 < 𝐵&B§. 

(6-1) 

Results: The minimum energy per bit, i.e., the result of the optimization above, can be seen in Figure 5-2 for 
𝑓� = 120	GHz,B&B§ = 12	GHz, 𝑃&B§ = 10	W for the transmit antenna, a distance of 𝑑 = 20	m, antenna gain 
of receive and transmit antenna of 6	𝑑𝐵 and a path loss exponent of 𝛽 = 2. It is important to note that the 
evaluation does not incorporate the effect of the modulation scheme on the PAPR and the resulting backoff. 
Thus, it is likely that the energy efficiency of ZXM is underestimated, particularly as highly spectral-efficient 
QAM modulations have a high PAPR, degrading the PA efficiency. As can be seen, ZXM is significantly more 
energy efficient up to a rate of about 30 Gbps. Interestingly, a faster-than-Nyquist signalling factor of 𝑀D§ =
2 seems to be most efficient in the considered setting for most rates.  

Exploring alternative waveforms for the sub-THz band, ZXM demonstrates higher energy efficiency than 
conventional QAM, considering analogue frontend power consumption. While ZXM sacrifices peak data rate, 
its energy efficiency makes it suitable for scenarios prioritizing energy efficiency over data rate.  

 
 

Figure 5-2: Energy per bit of ZXM and QAM. 
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5.1.3 Polar constellations 
Problem statement: The polar constellations are an alternative to the classical QAM Mapping. It is especially 
well-adapted for FR2 bands and THz bands where the oscillators integrated on the devices are not very accurate 
leading consequently to a greater lack of synchronization. This phenomenon will entail phase noise.  

Furthermore, the proposal is agnostic to any frequency band and could be also used in frequency bands below 
6 GHz and, in this case, mainly interesting for high mobility speed that entails Doppler shift. Both phenomena, 
high frequency and/or high mobility speed, will induce rotation of the constellation (bits to symbols mapping) 
in reception. The goal is to create new types of constellations robust to phase noise and Doppler shift. 

Methodology: Polar constellations are combined, in the system design, to a multicarrier waveform like CP-
OFDM. Those new types of constellations induce to implement an advanced (but simple) demodulator (Figure 
5-3) designed to correct CPE of the received polar constellations symbols. 

Initially, the bit error rate (BER) (or block error rate (BLER)) is evaluated through an additive white Gaussian 
noise (AWGN) channel with Doppler Shift effect; in a second time the evaluation of this new constellation 
will be evaluated with some 3GPP channels with Doppler Shift model. The Block diagram is described in the 
Figure 5-3 with detailed description of the relevant blocks.  

 
Figure 5-3: The Polar Constellation impact the Modulation and the Detector modules. 

To build the spiral constellation, the following equation is used, 
𝒄(𝒊) = 𝒂𝒊𝒆𝒋𝝋𝒊 , (6-2) 

with 𝑎v and 𝜑v being the amplitude and the phase of the 𝑖-th point respectively. For the spiral constellation all 
amplitudes 𝑎v  are different, 𝑎v = 𝑎� + 𝑖∆𝑎 , with for example 𝑎� = 1 and   ∆<= 1 the phase 𝜑vis optimized to 
have the better performances against AWGN channel. For a second solution presented in this part x-PC (x 
points of Polar Constellation), this is the same equations but limited to a quadrant. At the receiver side, the 
common phase error (CPE) can be estimated with the following formula, 

∆𝝋=
𝟏
𝑵m∆𝝋(𝒊)

𝑵

𝒊^𝟏

, (6-3) 

wherein 𝑁 is the number of OFDM carriers used to estimate the phase variations. The advanced detector for 
polar constellations estimation applies the following steps: 

1. First, estimation of the amplitude of the received point. 
2. Then, estimate the common phase error by comparing the data projected on the I and Q axes with the 

data transmitted (closest amplitude). 
3. Calculate the phase difference between received and sent points is given by: 

∆`(a)= 𝜑(a) − 𝜑b(a) + 𝑏a , 
(6-4) 

4. By adding the different estimates to each OFDM carrier, it is possible to improve the estimate of CPE, 
expressed above, and reduce the influence of white noise. 
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5. Finally, the Doppler shift of each OFDM symbol can be estimated and correct it. 

Interest to be noticed is that this system does not need any pilot symbols, only a preamble symbol at the 
beginning of transmission for channel estimation. 

Results: The simulations are carried out with the assumptions of perfect CSI and synchronization. To evaluate 
the performances of the constellations, the metric is BER (or BLER) versus AWGN channel and Doppler Shift. 

Two types of polar constellations are proposed for evaluation, the first one is the spiral (blue points in Figure 
5-4 (a)) which is high robust against Doppler and the second one (16-PC): red points in Figure 5-4 (b)) that is 
similar close to an 16QAM (blue points in Figure 5-4 (b)) and that gives better performance than classical 
16QAM over AWGN and Doppler shift channel.  

Figure 5-4 (a) illustrates the effect and the correction of Doppler shift for the spiral constellation showing the 
interest of the CPE estimate and correction. 

  
(a) Polar constellation at the transmitter/receiver 

sides 
(b) 16QAM and 16-PC representations at the 

transmitter sides 
Figure 5-4: Polar Constellation types. 

Figure 5-5 shows the performance of the different constellations according to Doppler frequency effect versus 
the Eb/N0 value needed to obtain one BER equals to 5x10-5. At Doppler frequency below 60 Hz, classical 
16QAM gives the best performance. It can be noticed that the advanced detector gives significant gain 
especially for the spiral constellation where around 200 Hz Doppler gain is obtained leading the 16-Spiral with 
advanced detector to support around 280 Hz against 100 Hz for the 16CP.  

 

Figure 5-5: EB/N0 performance of 16QAM, 16-PC, 16 spiral versus Doppler shift @BER=10-3. 

As perspective, this study aims at:  
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• Evaluating the performance over 3GPP channel model affected by Doppler shift and phase noise, 
especially in sub-THz bands.  

• Evaluating higher constellation order (typically 32 and 64 states). 

5.1.4 Hardware-friendly waveforms  
Problem statement: During the first phase of Hexa-X project it was observed that for single carrier frequency 
domain equalization (SC-FDE) transmissions, PAPR level can notably be reduced by selecting suitable 
constellation patterns and pulse shaping filter. This reduction in PAPR can be achieved with just moderate or 
even no losses in the BLER performance. For example, a large PAPR reduction of 1.8 dB can be achieved 
using 16-APSK pattern compared to NR 16QAM case.  This improvement comes with a moderate loss of 0.2 
dB in the BLER performance. In case of higher modulation order, the selected Amplitude Phase Shift Keying 
(APSK) constellation pattern exhibits a PAPR reduction of 0.6 dB in comparison to standard NR 64QAM, 
without any further penalty in BLER performance [HEX23-D23]. However, identifying the optimal 
waveforms, i.e., modulation and filtering is a challenging task, particularly for higher modulation order. The 
mutual dependency of modulation and filtering as well as the large number of possible combinations to pack 
the constellation points in various phase noise channel conditions requires solution approaches with high 
computational efforts. This challenge is partly addressed in [MNM+24]. In the context of Hexa-X-II the 
feasibility of these hardware friendly waveforms will undergo validation through transmission over the air 
using real-world sub-THz hardware setup. 

 
Figure 5-6: In-house sub-THz proof-of-concept setup. 

Methodology: The hardware friendly constellations detailed in [HEX23-D23] and designed in [MNM+24] 
will undergo validation through over-the-air transmissions using an in-house demonstrator with 144 GHz 
hardware in the loop. Figure 5-6 shows the proof-of-concept (PoC) set-up utilized to validate the performance 
of the diverse optimized waveforms. The flexible PoC setup can support various waveform types and 
constellation designs. Test vectors of different designed waveforms can be pre-generated and uploaded to the 
arbitrary waveform generator (AWG) (upper left corner of figure). The base band signals are then directed to 
the transceiver board (TRX) (middle left side in the figure), directly upconverted to 144 GHz and transmitted 
over a horn antenna with 25 dBi gain. The TRX board is capable of transmitting signals with up to 5GHz signal 
bandwidth. For the investigations, RF output power is roughly 3 dBm for 64QAM case. Note that the purpose 
is to validate the performance of diverse designed waveforms, the power level setting is chosen such that the 
hardware setup operates in linear region. The test vectors are designed to occupy the entire 5 GHz bandwidth, 
fully exploiting the transmission bandwidth capability of the TRX board. Detailed setting parameters on the 
pre-generated waveforms can be found in [MNM+24]. At the receive side signal is collected by a horn antenna, 
down converted by a measurement module, and captured by an oscilloscope at a sampling frequency of 80 
GHz. From transmit to receive antenna the received signal travers over 1 m distance and imposed by real-
world hardware impairments. After transmission, the received signal is offline investigated using a MATLAB-
based processing module. The following steps are performed: resampling, synchronization, filtering, and down 
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sampling to the original sampling frequency. Channel estimation and equalization are done in frequency 
domain utilizing common textbooks algorithms such as least squares and averaging over transmitted blocks. 

Results: To ensure an understanding of the capabilities and limitations of the setup at sub-THz frequency, the 
initial focus is on transmissions of SC-FDE waveform type with NR standard square constellations. Once 
feasibility is confirmed, the investigation can proceed to explore other waveforms designed for sub-THz 
specific requirements.  

Figure 5-7 shows the results of NR standard waveform transmissions deploying QPSK, 16QAM, 64QAM and 
256QAM modulations. The observed EVM is well below the 3GPP recommended values for all modulation 
orders. Additionally, the coded BER performance over a transmission of 260 symbols is as follows: 0 for 
QPSK, 0 for 16QAM, 3.2*10-7 for 64QAM and 3.5*10-7 for 256QAM. These results serve to validate the 
feasibility of wireless transmission at 144 GHz using the implemented hardware setup. In the upcoming 
deliverables, the performance of APSK and other optimized waveforms candidates will be investigated and 
reported. Furthermore, a performance comparison to the NR standard will be conducted.  

 
Figure 5-7: Received constellation pattern of the transmit signals in NR standard format. 

5.2 Waveform and modulation enhancements 
This section introduces enhancements to waveform and modulation schemes for wireless systems operating in 
all frequency bands. As known, waveforms and modulations schemes are an important asset to achieving 
higher rates and spectral efficiency. However, as new applications arise, other— now essential—aspects such 
as mobility and energy consumption must be considered. These new challenges demand low-complexity 
techniques capable of tackling known issues, including high Doppler shifts, PAPR, and out-of-band emissions. 
The following subsections address some of these issues by enhancing and optimizing known standardized 
solutions. 

5.2.1 Adaptive multicarrier modulation  
Problem statement: Multicarrier modulations (e.g., CP-OFDM) have established themselves in various 
standards thanks to their advantages compared to the single-carrier system: robustness against multiple paths, 
simple equalization, and natural association with MIMO systems, etc. But there are still areas for improvement 
such as resistance to Doppler, out-of-band radiation, PAPR, etc. In that sense, a new type of multicarrier 
modulation is proposed, flexible and robust in the face of the areas of improvement listed above. This section 
describes one new multicarrier scheme called adaptive multi-carrier modulation (AMCM) that is flexible in 
the sense it easily adapted to the radio environment (time and/or frequency selective channel). This study 
introduces this new waveform by analysing its power spectral density (PSD) and compare it to classical CP-
OFDM. 
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Methodology: The block diagram with detailed description of the relevant blocks is depicted in Figure 5-8. 

 
Figure 5-8: Block diagram with AMCM Modulation. 

As illustrated in Figure 5-9, the AMCM modulation is based on the disjoint processing of the In-phase and 
Quadrature-Phase channels of the data symbols, i.e., I and Q. The inverse fast Fourier transform (IFFT) is 
applied separately at each of them. Moreover, the data processing in the frequency domain, i.e., before IFFT, 
includes a summation between real (imaginary) modulation symbols and the negative (positive) value of their 
quadrature in phase version delayed according to the delay factor 𝑹, i.e., 𝑹 being the delay between I and Q 
ways. Then, phase rotations  𝑒2Ku

@
4A and 𝑒5Ku

@
4A are applied on I and Q channels, respectively, to guarantee a 

quadrature between them to make exact restitution after demodulation at reception side. This generic scheme 
allows us to obtain classical CP-OFDM by applying 𝑹 = 	𝟎 in the formula showing the flexibility of the 
system. Z is the classical delay line introduced in the common “electronic circuit world”.  

 
 

Figure 5-9: AMCM Modulation and Demodulation.  

It can be seen that this architecture implements 2 FFTs that can be viewed as an increase in complexity 
compared to CP-OFDM. It is not the case as 2 real FFTs is used instead of one complex one in pure OFDM, 
leading to around the same.   

Results: Figure 5-10 illustrates the difference between OFDM and AMCM modulations in PSD point of view.  

 
Figure 5-10: the PSD of OFDM (R=0) and OQAM (R=1). 
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It can be observed that a significant gain in favour of the AMCM compared to CP-OFDM that allows AMCM 
to fit better constraints due to spectrum mask imposed by the regulation instances, especially from ITU in THz 
bands. 

In perspective, the objectives are to provide other type of performance results in terms of BLER vs SNR over 
frequency selective channels (3GPP model) and to evaluate the robustness in mobility environment (Doppler 
effect). Combining AMCM with polar constellations (Section 5.1.3) is also one objective to evaluate the whole 
system with phase noise and Doppler shift.  

5.2.2 New LDPC code parity matrix design 
Problem statement: Correction codes are one of the essential functions of the digital communication chain. 
LDPC codes have been selected by 3GPP for 5G, they offer a wide variety of size and code rate, called 
modulation and coding schemes (MCS). This work proposes a new parity matrix structure based on the 
structure of 3GPP (Figure 5-12)  which improves the performance according to the number of iterations of the 
decoder allowing to decrease the energy consumption of the system. 

In the first phase, a new design for the 5G LDPC matrix is proposed, which retains the constraints of the 
matrices defined by the 3GPP and which offers increased performance with a lower number of iterations. The 
second step defines a new matrix scheme that would be proposed for the design of 6G systems, improving 
performance while minimizing latency and reducing energy consumption (optimization of the number of 
decoding iterations). AI will be also introduced as an optimized tool to achieve these goals. Some first details 
are given in Chapter 7. 

Methodology:  To evaluate the gains of the new LDPC matrixes, link simulations are performed over AWGN 
channel and compute curves in terms of BLER versus SNR. The Block diagram in Figure 5-11 illustrates the 
relevant blocks to evaluate the LDPC codes. 

 
Figure 5-11: Block Diagram with LDPC code. 

 
 

Figure 5-12: Structure of the parity matrix H. Figure 5-13: Definition of BG1 and BG2. 

The parity matrix H is composed of 6 sub-matrices: 𝐴, 𝐵, 𝐶, 𝐷, 𝑂 and 𝐼. The matrix 𝐴 is the Kernel, 𝐶 and 𝐷 
are extended matrices, 𝐵 is a diagonal structure matrix, 𝑂 an empty matrix and 𝐼 a matrix identity. To evaluate 
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the LDPC at the receiver side, Normalized MinSum decoder [EE14] is used, which is the common decoder 
implemented in the hardware component.  

3GPP defines 2 basic graphs (BGs), called BG1 and BG2, that are photograph matrices designed from 2 main 
parameters K, the number of bits of information, and 𝑍𝑐, the factor of expansion. The matrices obtained make 
it possible to code blocks of 12 à 8448 bits (𝐾¢𝑍𝑐	𝐾). BG1 and BG2 are depending on the coding rate and the 
bit of information as illustrated in Figure 5-13, with the following definition: 

Use BG2: if 𝐾¢ < 292 or 𝐾¢ < 3824 and 𝑅 < 2/3 or 𝑅 < 0.25 else BG1 

Results: The performance results (BLER vs SNR) are given in AWGN channel for one BG1 and one BG2 
matrixes. In the simulation campaign, the quasi totality of MCS is used to evaluate the new matrices designs. 
The results lead to the same conclusion as the performance presented below. 

 
Figure 5-14: Performance for the new matrix (orange curves) BG1 K=330 bits R=1/3 for 5 and 10 iterations of 

decoding compared to 3GPP matrix (black curves). 

 
Figure 5-15: Performance for the new matrix BG2 (orange curves) K=12 to 90 bits, R=1/5 for 5 iterations of 

decoding compared to 3GPP matrix 

Figure 5-14 shows that the matrix scheme gives the same performance as the matrix defined in 3GPP but with 
twice less iterations. This gain can be reduced by reducing complexity and thus energy consumption. At the 
same number of iterations (#10 iterations), this design has 0.4dB gain compared to 3GPP matrix and #5 
iterations, one gain of 0.75 dB. Figure 5-15 illustrates the performance obtained with short packet sizes with 5 
iterations of decoding.  For the smallest packet size (12 bits), the achieved gain is 2.5 dBs at block error rate 
(BLER) = 102q, which corresponds to close a decrease of a factor of 2 of the signal’s transmit power.  

To conclude, it can be said that the new matrices design, based on the optimization of the matrices 𝐶 and 𝐷, 
leads to better performance results when using 10 iterations at the decoder (gains between 0.2 dB and 1.5 dB 
depending on the MCS) compared to current 3GPP matrices and to the same performance when using 5 
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iterations with the matrices compared to 3GPP matrices with 10 iterations of decoding. In current 5G hardware 
(HW) implementation of transmitter, the most often, 10 iterations are carried out. Thus, this design allows in 
that case to achieve the same performance with twice less of iterations decoding that can be declined in power 
consumption gain. Is it possible to announce that a factor 2 of power consumption in the decoding processing 
is achieved? The analysis is made in that sense. 

In perspective, this work is on new LDPC matrices designs for 6G (not background compatible with those 
defined in 3GPP) and also to the matrix 𝐴 (the Kernel of 𝐻) optimization by using AI approach. One first 
strategy description about AI is described in Chapter 7. 

5.2.3 Optimised delayed bit interleaved coded modulation 
Problem statement: For achieving higher spectral efficiencies, coded modulation combines higher order 
modulation with channel coding. Bit interleaved coded modulation (BICM) [CTB98] creates code-diversity at 
individual bit level. Bit-wise interleaving at encoder output breaks the correlation induced by the modulation 
and adds additional redundancy against bit errors. DBICM [MLY+16], as a modified version of BICM, can 
decrease the achievable spectral efficiency gap between coded modulation (CM) and BICM. The capacity of 
DBICM depends on the specific delay schemes used in the bit delay module before modulation. For a given 
choice of constellation and bit labelling, the best delay scheme that maximizes the DBICM capacity can be 
obtained. The authors of [LQY21] have considered Gray labelled QAM constellations and analysed the effect 
of the delay scheme on the performance. The task of obtaining the best delay scheme for Gray labelled QAM 
constellations has been converted to a simpler problem of obtaining the best delay scheme of the constituent 
PAM constellation in [LQY21]. Authors of [Hos21] have considered APSK constellations of various sizes and 
analysed the effect of delay scheme on the performance. Bit delay scheme optimization requires calculation of 
the DBICM capacity using expensive numerical integration. A common approach involves employing Monte 
Carlo simulation and its complexity grows quadratically (𝑂(𝑀.)) with the constellation size. 

In this work, the aim is to optimise delay schemes for a given constellation using a low complexity algorithm 
compared to the conventional numerical integration method. For developing this algorithm, the problem is 
viewed as analogous to the bit labelling optimisation problem in BICM. 

Methodology: The structure of a typical DBICM system is illustrated in Figure 5-16. The functionality of 
different blocks in the system model can be explained as follows. The encoder and interleaver module perform 
forward error correction (for example LDPC). Input bit stream 𝒖� of length K received at time t. It is converted 
to coded and interleaved bit stream and 𝒄� of length N. Serial to parallel module converts 𝒄� into 𝑚 parallel 
sub-blocks where the ith sub-block is  𝒄�(𝑖) = [𝑐��(𝑖), … , 𝑐�=21(𝑖)], where 𝑛 = Q

:
 and 𝑖 = 0,… ,𝑚 − 1. The bit 

delay module then introduces delay 𝑇v  into the ith sub-block 𝒄�(𝑖) based on the given delay scheme 𝐓 =
[𝑇�, … , 𝑇v , … , 𝑇:21	], where 𝑇v 	𝜖	{0, . . , 𝜏:<i}. Finally, the mapper maps bit sequences output from the bit delay 
module into constellation symbols. The receiver side blocks have the opposite functionality. The demapper 
module can use the extrinsic information of delayed symbols from the decoder for symbol demapping in 
addition to received symbols. 

Bit labelling optimisation using Chernoff bound [CTB98] based cost function minimisation along with binary 
switching algorithm (BSA) was introduced in [SFG+03]. A modified version of the Chernoff bound is used as 
a cost function to optimise delay schemes. The proposed method demonstrates strong performance only for 
Gray-labelled constellations, while the BICM performance on non-Gray labelled constellations is generally 
considered poor. Bit error rate and capacity curves are used to measure performance of the DBICM schemes. 
The best delay scheme has the highest capacity for a given SNR. 
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Figure 5-16: The structure of a delayed bit-interleaved coded modulation (DBICM) system. 

Results: 64-QAM, 256-QAM, 1024-QAM and 16-APSK Gray labelled constellations are considered to 
initially obtain the capacity curves using numerical integration. The highlighted curves in Figure 5-17 are 
obtained as the best delay schemes using the proposed low complexity method. Maximum possible delay 
𝑇><i = 1 case is considered. 

 
Figure 5-17: The performance comparison of the gap to Gaussian channel capacity for different DBICM delay 
schemes, BICM, and coded modulation focusing on specific constellations. The best delay scheme according to 

our proposed method is highlighted. 

Similar performance was obtained for Gray labelled 16-QAM, 16-PSK and 32-PSK. It is evident that the 
proposed low-complexity method can identify the best delay scheme at a given spectral efficiency with 
reasonable accuracy, especially at high SNR. Future work includes developing an analytical explanation for 
the results. 
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6 Intelligent radio air interface design  
In the last few years, the continuous evolution of wireless technologies has intersected with breakthroughs in 
machine learning, aiming to address the demands for spectral efficiency, reliability, and flexibility in modern 
telecommunication systems. This intersection is pushing for the creation of intelligent radio air interfaces, 
designed to enhance the performance and adaptability of wireless networks. This chapter delves into this 
dynamic area, exploring cutting-edge solutions leveraging artificial intelligence (AI) to optimize air interface 
design. Segmented into four main sections, each dedicated to a critical aspect of radio interface design, the 
chapter presents contributions ranging from the application of machine learning for modulation and coding to 
intelligent channel state information (CSI) acquisition, AI-based MIMO transmissions, and AI solutions for 
compensating hardware impairments. 

The first section, "Learning for Waveform, Modulation, and Coding," investigates how AI can be utilized to 
enhance modulation and coding by optimizing MIMO waveforms, designing for both communication and also 
for joint communication and sensing (JCAS), and optimizing LDPC matrix structures for error correction. The 
second section, "AI-based CSI Acquisition," delves into AI-driven techniques for CSI compression and 
prediction to maximize spectral efficiency while minimizing overhead. The third section, "AI-Based MIMO 
Transmission," discusses innovative solutions for MIMO transmission, including beamforming with imperfect 
CSI, antenna muting, user pairing, and pilot assignment in D-MIMO scenarios. Finally, the fourth section, "AI 
Solutions for Hardware Impairments," focuses on how AI can mitigate the non-linearities of power amplifiers, 
highlighting AI's potential in compensating for hardware imperfections affecting transmission quality. 

Overall, this chapter provides a comprehensive overview of how artificial intelligence is shaping the future of 
radio interface design, with profound implications for the development of more efficient, reliable, and 
intelligent wireless networks. 

6.1 Learning for waveform, modulation, and coding  
This section illuminates the potential of artificial intelligence in advancing modulation and coding techniques. 
By exploring optimized multiple-input and multiple-output (MIMO) waveforms for pilot-free channel 
communication, integrating sensing capabilities into waveform design, and optimizing LDPC matrix structures 
for error correction, the contributions presented here highlight how AI can overcome the limitations of 
traditional methodologies, promising significant improvements in spectral efficiency and transmission 
reliability. 

6.1.1 MIMO waveform for communication 

 
Figure 6-1: The considered system model for the ML-based pilotless scheme. 

Problem statement: In this contribution, MIMO transmitter and receiver are trained end-to-end to 
communicate without any channel estimation pilots [KHH23]. This means that the link can perform spatial 
multiplexing without wasting any resources for pilot overhead, thereby improving the spectral efficiency. This 
is achieved by considering the transmitter and receiver as part of a single model, connected by a differentiable 
wireless channel. Such a system can be learned in a supervised manner by treating the channel and any required 
conventional functions as fixed neural network layers, which are not modified during the training. This results 
in a learned MIMO waveform and a compatible machine learning (ML) based receiver for detecting the 
information bits. 

Methodology: As illustrated in Figure 6-1, an orthogonal frequency-division multiplexing (OFDM) system is 
considered, where a learned constellation shape is utilized to facilitate fully blind MIMO detection at the 
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receiver side using a DeepRx-type convolutional neural network (CNN)-based receiver [HKH21]. The detailed 
architecture of the considered ML-based receiver follows the MIMO DeepRx presented in [KHH21]. The ML 
receiver takes in the Fourier transformed received MIMO signal and outputs the log-likelihood ratios (LLRs) 
for each received spatial stream. With this, the input signal to the receiver can be expressed as: 

𝒚vK = 𝑯vK𝒙vK + 𝒏vK , (6-1) 

where 𝑯vK is the 𝑁¤ × 𝑁@ MIMO channel matrix for the i-th subcarrier and j-th symbol, 𝑁¤ is the number of 
receive antennas, 𝑁@ is the number of transmitted spatial streams, 𝒙vK is the transmitted 𝑁@ × 1 symbol vector, 
and 𝒏vK is the 𝑁¤ × 1 additive noise signal. 

In order to achieve pilotless spatial multiplexing, the transmit constellations are learned jointly with DeepRx. 
This means that, in the transmitter, the elements of 𝒙vK are selected from learned constellation points. In this 
work, each MIMO stream is modulated with a different constellation, meaning that 𝑁@ different constellations 
are learned. Therefore, each element of 𝒙vK is chosen from a different constellation, which allows the receiver 
to learn pilotless MIMO detection. 

The input of the DeepRx is formed by collecting the received signal samples over one slot, consisting of 𝑁� 
subcarriers and 𝑁x OFDM symbols. Therefore, the input array has a size of 𝑁� × 𝑁x × 𝑁¤. This input is fed to 
a MIMO DeepRx model, as described in [KHH21], with the exception that now there is no separate input for 
the raw channel estimate as there are no pilots being transmitted. The output of the pilotless MIMO DeepRx 
model consists again of the log-likelihood ratios, which are fed to the low-density parity check (LDPC) decoder 
for extracting the information bits. 

The system can be trained end-to-end assuming a differentiable implementation of the radio link (e.g., using 
[HCA+22]). In this work, the training is done similar to [HKH21] by using the binary cross entropy (BCE) 
between the detected and transmitted bits as the loss function. To facilitate more robust convergence, the loss 
function includes also a term which penalizes for constellation points which are too closely spaced [KHH23]. 
When the transmitter and DeepRx are trained jointly using the above loss function, DeepRx will learn to utilize 
the simultaneously learned constellations for detecting the data signals without any pilots. 

The approach is evaluated with single-user MIMO (SU-MIMO) simulations, where two MIMO streams are 
multiplexed. The simulations are performed using the Sionna library [HCA+22]. In particular, the proposed 
approach is trained with both 16- and 64-point constellations, resulting in 4 and 6 bits per symbol, respectively. 
Different channels models are employed for the training and validation to avoid overfitting to the selected 
channel models. For training, each training sample is generated either from clustered delay line (CDL)-A and 
CDL-B channel profiles [38.901] (selected randomly for each training sample), while CDL-C is used for 
validation. More detailed simulation parameters are presented in the Appendix (Section A.4.1). 

 
Figure 6-2: The spectral efficiency gain of the ML-based pilotless scheme over the conventional pilot-based 

scheme. 
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Results: The proposed learned pilotless scheme is compared to a conventional QAM-OFDM waveform and a 
nonlinear K-Best detector [FT15] which is utilizing a demodulation reference signal (DMRS) based channel 
estimate. The performance gain over the conventional DMRS-based scheme can be analysed from Figure 6-2. 
With signal to noise ratio (SNR) below 15 dB, a gain of 15-20% is typically achieved, with some exceptions. 
However, when the SNR goes above 15 dB, the ML-based pilotless scheme performs worse than the baseline. 
Since use of the 64-point constellations is required at these SNRs, the issue is most likely related to the higher-
order constellation. It is likely that a larger DeepRx model would be required for detecting the high-order 
modulation symbols at high SNRs. Nevertheless, this result already shows that by learning jointly the 
constellation shapes used by individual spatial streams as well as a CNN-based receiver, it is possible to 
transmit several spatial MIMO streams successfully without any pilots. 

6.1.2 Waveform and precoding for JCAS 
Problem statement:  JCAS combines sensing and communication resources to enhance system efficiency and 
develop new functionalities. While traditional JCAS designs use model-based algorithms, unexpected 
hardware impairments can impact their performance [CLM+23]. Deep neural networks (DNNs) address these 
challenges, with single-component DNNs optimizing individual operations [LYL+22] and end-to-end DNNs 
jointly optimizing transmit and receive tasks [MSW+22]. However, the black-box nature of DNNs limits 
interpretability and often requires significant labelled training data. In this work, an end-to-end model-based 
machine learning (MB-ML) approach is used to compensate for hardware impairments, while augmenting the 
interpretability of the results. A semi-supervised learning (SSL) method, which combined labelled and 
unlabelled data, is proposed to reduce labelled data acquisition. The goals are: (i) to compensate for hardware 
impairments, and (ii) to show that with a small fraction of the labelled data needed for supervised learning 
(SL), the SSL framework can achieve similar performance to SL. 

Methodology: A JCAS scenario is simulated as follows; (i) a monostatic sensing transceiver is equipped with 
a ULA to sense a single target, and (ii) the same sensing transmitter is used to send messages to a single-
antenna communication receiver in a different direction of the target. The JCAS transceiver is assumed to have 
a coarse knowledge of the target and the communication receiver positions. An OFDM signal is designed and 
sent over the physical channel. However, the JCAS transceiver is perturbed with inter-antenna spacing 
impairments in the ULA, affecting beamforming and the processing of the backscattered signal from the target. 
The communication receiver is fed with CSI, which already includes the effect of the impairments. Hence, the 
impairments are compensated using just sensing data for training, as depicted in Figure 6-3.  

As a model-based baseline, a least-squares (LS) beamformer is adopted to steer the ULA energy into a 
particular direction, and the orthogonal matching pursuit (OMP) algorithm is used to estimate the target 
position. The MB-ML approach parameterises the LS beamformer and the OMP algorithm to learn the true 
inter-antenna spacing values from data. Nevertheless, model-based OMP is a nondifferentiable algorithm 
which does not allow for learning. A modified OMP algorithm is developed to enable end-to-end learning of 
the impairments. Reducing the amount of labelled data is achieved by a two-step SSL approach. Firstly, 
labelled data samples are used to learn the impairments (supervised), after which unlabelled received data 
samples are utilised to complete training (unsupervised). The received signal is pre-processed to compute the 
so-called angle-range map, a 2D matrix showing the angle and range of potential targets in the scene. The 
positions of the targets are computed in OMP by iteratively looking at the highest peak in the map and 
subtracting it from the map for the next iteration. This angle-range map is shown to be sensitive to hardware 
impairments, i.e., the peaks corresponding to targets are no longer in the correct positions under hardware 
impairments, and the magnitude of the peaks is reduced. Hence, this work proposes to maximize the magnitude 
of the highest peak in the angle-range map during the unsupervised stage. The position mean squared error is 
employed as the supervised loss function.  

Results: In Figure 6-4, JCAS trade-offs are plotted for the model-based baseline, SL with different degrees of 
training data and SSL. When impairments appear in the JCAS transceiver, the baseline severely degrades in 
performance. SL can deal with the impairments and achieve a performance similar to the baseline with perfect 
knowledge of the impairments. Poor performance is shown by SL when fewer labelled data samples are used. 
However, the same performance as SL using all the labelled data is achieved by SSL with 1.18% of the labelled 
data, and 98.82% of unlabelled data. 
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Figure 6-3: Forward pass of the learning algorithm.  

Training only involves single-target sensing, as accounting for hardware impairments in sensing also accounts 
for the hardware impairments in the transmitter that affect communication performance. The supervised loss is 
replaced by the unsupervised loss after a fixed number of iterations. End-to-end learning is performed, where 

the coloured blocks contain the parameters to learn. 

 

 
Figure 6-4: JCAS trade-off performance under hardware impairments for a false alarm probability of 1%. 

Only Pareto optimal points are shown for supervised learning (SL) and semi-supervised learning (SSL). 

6.1.3 AI for LDPC matrix structure optimization 
Problem statement: Low-density parity-check code (LDPC) is a type of error-correcting code used in digital 
communication systems to detect and correct errors that occur during transmission. It consists of adding 
redundancy bits to the message transmitted by the generator matrix G, and then solving equations at the 
receiver to recover the original message. These equations are called check equations and are given by the parity 
check matrix H. LDPC codes are currently used in the communication chain of 5G and may be continued for 
6G. To ensure evolution and improvement of the communication chain, it is essential to improve the 
performance of error-correcting codes in this chain. This improvement could potentially be achieved through 
artificial intelligence where theoretical methods are limited. Artificial intelligence has proven its worth in many 
domains and could also be used for LDPC codes. This is why the topic of optimizing LDPC codes using 
artificial intelligence for 6G is being addressed. 

Methodology: The 5G communication chain consists of several blocks, including the LDPC encoder and 
LDPC decoder (see Section 5.2.2). Recent research focuses on modelling the decoder using a recurrent neural 
network (RNN) to optimize the parity check matrix for a given codeword length [LDL+21]. The weights of 
this neural network are the coefficients of the parity check matrix as shown in the Figure 6-5. Since belief 
propagation (BP) decoding involves a recursive exchange of information, a recurrent neural network is used 
to calculate the decoding iterations. The output of each iteration is then used as input for the next iteration. The 
weights are updated automatically, and each new weight value undergoes a binary selection to ensure 
correspondence with the parity matrix structure. 
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Figure 6-5: System architecture with RNN decoder. 

After multiple decoding iterations, the proposed RNN tends to converge the weights, and thus the parity matrix, 
towards an optimal solution. 

These works address a classical LDPC structure, but the 5G LDPC structure (see Section 5.2.2) presents several 
challenges: 

• The structure - maintaining the structure after weight updates. 

• Size diversity - finding an algorithm capable of improving all the BG1 and BG2 matrices, regardless 
of Zc (expansion parameter). 

• Cycles - it is difficult to reduce cycles for small Zc. 

Further studies are ongoing to solve these different problems with a particular neural network structure which 
will be added in future deliverables, as preliminary results seem promising. 

6.2 AI-based CSI acquisition 
The acquisition of accurate channel state information (CSI) is pivotal for the efficient operation of modern 
wireless systems. This section focuses on innovative AI-based strategies for CSI feedback compression in 
multi-vendor scenarios and intelligent CSI compression techniques. It presents research on enhancing CSI 
compression and prediction using artificial intelligence, aiming to reduce overhead and improve spectral 
efficiency without compromising the accuracy of channel information. The utilization of AI in this context 
demonstrates a significant step towards more adaptive and efficient wireless communication systems. 

6.2.1 ML-based channel state feedback compression in a multi-vendor scenario 
Problem statement: CSI feedback is a key element to enable MIMO and beamforming techniques and 
improve system performance. However, as the number of antenna elements increases the CSI overhead 
becomes significant. While codebook-based channel state feedback (CSF) can limit overhead, this is at the 
expense of a degraded CSI accuracy.  

The target of this contribution is a demonstration that cooperative AI based techniques can improve the spectral 
efficiency and accuracy of CSF compared to legacy CSI schemes. In the considered demo, an AI/ML algorithm 
runs at the device to encode/compress the CSI to be sent. At the gNB a reciprocal AI-based technique 
decompresses the CSI. Together, those two AI algorithms can improve CSI resolution for a given number of 
bits, or equivalently reduce overhead for a fixed CSI resolution. 

Methodology: The proof of concept is the over-the-air (OTA) demonstration of the feasibility of cross-vendor 
cooperation to enable joint AI solutions. The Section 10.3.1 provides an overview of the planned Lab and over-
the-air tests.  
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As a step towards this goal, a simulation study of this scheme and the accuracy evaluation between the CSI at 
UE and the reconstructed CSI at the gNB is here proposed. This contribution details the scenario and simulation 
configuration and assumptions considered for this study. 

In the considered setup, the gNB and UE cooperate to enable compressed CSF. The end-to-end joint training 
of the ML models (CSI decoder and CSI encoder, respectively, as shown in Figure 6-6) by sharing data set to 
a single entity that does the training is not a preferred solution as it requires sharing the proprietary models. 
Instead, the ML models are obtained through sequential and separate training of the UE and gNB models. That 
is, the model at UE and gNB sides are trained independently: the UE starts with training the UE encoder and 
UE reference decoder (both using UE-proprietary models) and then share the dataset so that the gNB would 
be able to learn a decoder (using gNB-proprietary model) capable of generating similar output as the one from 
the UE. This mechanism enables ML-based CSF without sharing the proprietary ML models at the UE and 
gNB. The process is detailed below.  

1. The UE-side starts by collecting channel state measurement, these are the features and labels for 
training the models.  

2. When enough channel measurements have been collected, the UE-side starts training the ML model 
encoder and the reference decoder for CSF compression. 

3. UE-side shares a dataset to the gNB-side containing compressed CSF-samples and the channel state 
inputs, i.e., the ground truth. 

4. With this dataset, the gNB-side trains a ML model capable of decoding the compressed CSF.  
5. After training at the gNB-side, the UE-side and gNB-side ML models are deployed to the UE and the 

gNB, respectively. 

 
Figure 6-6: Diagram of the gNB and a UE processing block. 

To evaluate the performance of ML-based CSF compression a system-level simulation will implement infra-
vendor cooperation where the UE-side trains the encoder and decoder using UE AI/ML model and the gNB-
side trains the decoder using network (NW) based ML model. The simulation will output reconstructed CSI 
samples that will be compared to ground truth CSI using the squared generalized cosine similarity (SGCS) 
metric. The simulation results will then evaluate the accuracy of the reconstructed CSI at the gNB versus the 
CSI at UE. Further details are provided in the Appendix (see Section A.4.2). 

Results: The following table summarizes the sequential training performance based on 8 port 14 sub-band 
3GPP TR 38.901-based Dense Urban channel model [38.901], dataset shared between the UE and the network. 
Two different encoder model designs have been considered: UE-side encoder type-1 (Qualcomm model) and 
UE-side encoder type-2 (Nokia model), to mimic different UE vendor scenarios in the network. Each encoder 
is trained following the steps 1-5 detailed above. For each encoder model, the SGCS performance have been 
looked with (a) UE-side decoder through joint end-to-end training, (b) Network-side encoder-specific decoder 
through UE-first training with individual encoder dataset, and (c) Network-side common decoder through UE-
first training with mixed encoders: UE-side encoders type-1 and type-2 data sets.  

With the current configuration each UE has 4 Rx antennas, providing a channel matrix of rank 4. The layer i 
in Table 6-1: SGCS performance with sequential training. denotes the eigenvector i, where layer 0 is for the 
best layer.  

As it can be seen from the results, for each encoder, the UE-NW SGCS performance with UE-first sequential 
training is similar to UE-UE joint training performance, and NW common decoder gives similar performance 
as the NW encoder-specific decoders. This proves that sequential training through dataset sharing is an 
effective training method to deal with multi-vendor scenarios without disclosing the proprietary neural network 
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(NN) architectures. Furthermore, results show that a common NW decoder model can be trained through 
sequential training to deal with multi-UE vendor scenarios in the network.  

Table 6-1: SGCS performance with sequential training. 

Encoder Decoder Training SGCS (lin) 
layer 0 

SGCS (lin) 
layer 1 

SGCS (lin) 
layer 2 

SGCS (lin) 
layer 3 

UE encoder 
type 1 

UE decoder 
type 1 

End-to-end  0.844 0.736 0.666 0.617 

UE encoder 
type 1 

NW     
decoder 1 

UE-first, encoder-
specific decoder  0.847 0.732 0.656 0.603 

UE encoder 
type1 

NW common 
decoder 

UE-first, common 
decoder 0.842 0.725 0.648 0.595 

UE encoder 
type 2 

UE decoder 
type 2 

End-to-end  0.852 0.757 0.705 0.673 

UE encoder 
type 2 

NW     
decoder 2 

UE-first, encoder-
specific decoder  0.856 0.756 0.698 0.663 

UE encoder 
type 2 

NW common 
decoder 

UE-first, common 
decoder 0.854 0.753 0.695 0.659 

6.2.2 Intelligent CSI compression 
Problem statement: CSI compression is essential for communicating the channel characteristics between UE 
and base station (BS) when the channel matrix is too large to be transmitted back digitally via uplink, e.g., in 
the frequency division duplexing (FDD) of large MIMO systems. In turn, the fed-back compressed 
representation of the precoder matrix (or channel eigenvectors over sub-bands per layer) is of large importance 
to represent channel statistics adequately. Advanced precoding techniques at BS side (a must for enhancing 
UE signal strength in modern MIMO systems) allow to: 

• change the original physical channel to the effective channel. 
• improve the channel’s gain (e.g., due to “synchronized” coherent addition of the signals from BS 

antennas towards UE). 
• improve the no-fading statistics (known as “solidification” of the physical channel by a precoder). 

This research work concentrates on the study of intelligent CSI compression techniques for multi-user MIMO 
(MU-MIMO), using AI-driven models or non NN-based approaches of smaller complexity.  

Methodology: Initial study and evaluations have started from the SU-MIMO case, where a BS precoder treats 
a single UE, having relatively small number of receiving antennas, i.e., NRX UE << NTX BS. It is well known 
since early MIMO studies [T99] that capacity is maximized when precoder utilizes, per resource element (RE), 
the “best” eigenvectors (corresponding to the largest eigenvalues) of the channel correlation matrix. In the 
special case of study (NRX UE << NTX BS), advanced precoder is even more important as it essentially shifts 
the receiver (RX) diversity to the transmit (TX) side of the BS. The improvements from advanced precoding 
can be utilized for better UE performance (e.g., data rate) or to reduce power at the BS side. Figure 6-7 presents 
an example of SU-MIMO channel improvement via linear precoding under unit transmit power constraint. 
Intelligent compression of channel H information and precoder matrix W enables harnessing the full precoding 
gains in large MU-MIMO system since the accuracy is required for DL BS precoder construction.  In practice, 
the channel matrix cannot be delivered back digitally in full per every RE due to its large size. Delivery of 
coefficients per sub-band may be considered (as in 5G standardised Type2 scheme) but it is still costly even 
with large coefficients quantization. Hence, there is great need for more advanced CSI compression and 
precoding schemes. In 5G new radio (NR), this is done with further frequency compression of the sub-band 
precoder via the so called standardised enhanced type 2 (eType2) scheme, or via AI-based schemes (studied 
from Rel.18 [FLV+23]). But how to “synchronize” different channels inside of a sub-band for the optimal 
result is an open question. 

At the first stage of the study, a background analysis has been performed, where:  
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• the mathematical model of the eType2 advanced precoding scheme defined in 5G NR has been 
constructed. 

• the performance of eType2 has been compared to the simpler 5G NR precoding scheme (termed as 
Type1) which is de-facto used currently in industry.  

• the performance of outer bounds for the system have been constructed and compared. 

 
Figure 6-7: Example of SU-MIMO channel improvement via linear precoding under unit transmit power 

constraint.  

Results: Numerical simulations have been complementing this analysis, providing initial observations and 
further research directions. For example, Figure 6-8 examines the capacity performance (in terms of bits per 
RE averaged by the number of information layers) of the Type 1 and eType2 precoders as well as the heuristic 
sub-band (SB) precoder (generalized from [T99] approach) and the singular value decomposition (SVD) bound 
for the case of 3-layers and 4 spatial beams (optimally selected from the full 16 beams basis, corresponding to 
32 dual-polarized BS antennas). A performance gap between Type1 and eType2 precoders is observed, 
confirming the advantage and importance of the latter. However, it is also observed that eType2 is not well 
aligned with the heuristic SB precoder performing close to the bound, and a possibility for improvement will 
be investigated in future work. Also, the 4-beams precoder bound performs very far (~5 dB) from the bound 
with the full 16 beam basis. Hence, trade-offs delivering better compression and preserving a larger basis size 
(in 5G number of beams) may be essential. Further details are provided in the Appendix (see Section A.4.3). 

 
Figure 6-8: Performance of the eType2 precoder for TDLA-30-5/LOW channel [38.101], υ=3 information layers 

and use of L=4 spatial beams basis. 
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6.2.3  CSI prediction 
Problem statement: In frequency division duplexing (FDD) systems, where channel reciprocity is not 
available, the downlink CSI is estimated at the UE and the estimated CSI is sent to the BS through a feedback 
report in uplink. In FDD systems, the CSI feedback incurs high overhead, motivating the study of ML-based 
CSI feedback enhancements in 3GPP. An autoencoder (AuE) can be used for dimensionality reduction and 
minimize feedback overhead, improving feedback accuracy at a maintained overhead compared to the 
conventional CSI feedback techniques. The AuE-based CSI compression has been studied for the ML-based 
CSI feedback enhancement in the Release-18 study [38.843]. The AuE-based CSI compression may suffer 
performance degradation due to channel aging in a dynamic network since the AuE model cannot capture the 
time-varying nature of the wireless channel.  

Methodology: To avoid the channel aging issues, this study aims at developing a deep learning-based solution 
that allows the BS to accurately predict radio channel variations under the 3GPP CSI feedback mechanism. 
Aiming at multi-step-ahead prediction based on a single feedback information under the CSI feedback process, 
this study proposes an evolutional CSI neural network (evoCSINet), a CSI framework that learns latent 
dynamics of radio channel for prediction applications. The proposed evoCSINet, detailed in Section A.4.4, 
uses deep neural networks as a parameterized function approximator to identify the unknown true channel 
dynamics from data. A dynamicNet is introduced that learns the temporal evolution of radio channel in latent 
space. This model has the potential to enable a recursive multi-step prediction in the latent space. The proposed 
evoCSINet applies the combination of autoencoder and dynamicNet to identify latent-level representation of 
channel dynamics from radio channel images given by the current channel states. Through learning the latent 
dynamics representation, evoCSINet is optimized towards multi-step predictions. The proposed evoCSINet 
provides a factorized representation of radio channel dynamics that allows evoCSINet to fit into the 3GPP CSI 
feedback procedure. As a result, it has been shown that the evoCSINet can achieve an accurate multi-step-
ahead prediction only based on the single feedback information of an encoded vector, called latent code. 

The factorized decomposition of the proposed evoCSINet allows two different implementations, namely, BS- 
centric and UE-centric predictions. In this study, a BS-centric prediction is introduced with prediction depth 
D, where the BS acquires the encoded CSI of downlink channel state 𝐻u at a slot k and wishes to accurately 
forecast the next D channel states 𝐻u51, 𝐻u5., … , 𝐻u5�	  into the future. Figure 6-9 depicts a schematic 
diagram of a BS-centric CSI prediction with the proposed evoCSINet, where the evoCSINet is split into UE 
and BS sides: encoder φ at the UE side, and dynamicNet F and decoder φ−1 at the BS side. Note that the single 
CSI feedback  𝑧u = 𝜙(𝐻u) from the slot k is used for precoding-based data transmission over the following 
slots, until the next CSI update. Therefore, the prediction depth D is determined by the CSI feedback 
periodicity, which is specified in the 3GPP TS 38.213 [38.213]. Throughout this work, the CSI periodicity is 
assumed to be 10 slots, corresponding to the baseline time periodicity of 5ms being considered in the Release-
18 study item on AI for the air interface, TR 38.843 [38.843]. This means that the BS should forecast the 
variation of CSI from  𝐻u51 to  𝐻u5¨ with the prediction depth D = 9 based on the single CSI feedback  𝑧u.  

 

Figure 6-9: Schematic diagram of feedback-based precoding design based on the proposed evoCSINet. 
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For performance simulations and analysis of its impact on precoding performance, channel realizations have 
been generated using 3GPP 5G Urban Macro (Uma) channel models [38.901]. The data set are created with 
15000 state sequences with length 12. Throughout this work, the new CSI-RS configuration with a comb-
factor 6 in frequency domain is applied for T=4 OFDM symbols within slot time 𝑘, i.e., with CSI-RS every 6 
of the 12 subcarriers of a PRB, and the number of available physical resource blocks (PRB) is assumed to be 
64, i.e., the number of subcarriers carrying CSI-RS in each of the T OFSM symbols is N = 64 × (12 / 6) = 128. 
Then, the corresponding channel states can be represented by the channel matrices of size T × N = 4 × 128, 
i.e., 𝐻u ∈ 𝐶r×1.t.  

Results: The performance metric considered is 𝜖-outage capacity, which is defined as maximum rate below 
which reliable transmission is possible at outage probability 𝜖 . In Figure 6-10, the 10% outage capacity 
(𝜖=10%) performance has been evaluated under three different CSI assumptions, perfect CSI, compressed CSI, 
and predicted CSI by evoCSINet, and it has been normalized by the upper capacity bound with perfect CSI in 
order to quantify prediction performance loss relative to the upper bound. The prediction time grids generate 
a specific set of time points with the same initial point k. Maximum ratio transmission (MRT) precoding 
method is used in this evaluation. MRT is known as optimal for this MISO setup by maximizing the signal 
gain, and CSI at the transmitter is required to enable the precoding. 

Notice that the MRT precoding with the compressed CSI suffers from a severe performance loss due to channel 
aging. For instance, the performance loss reaches 23% at the CSI aging of 9 slots, compared to the ideal CSI. 
The plot shows that evoCSINet achieves performance improvement compared to AuE-based CSI compression 
as the number of CSI aging slots increases. The performance loss of evoCSINet is reduced to 11% at the CSI 
aging of 9 slots. Further details are available in the Appendix A.4.4.  

 
Figure 6-10: Performance comparison between AuE-based CSI compression and evoCSINet-based CSI 

prediction in percentage capacity, compared to ideal CSI.  

6.3 AI-based MIMO transmission 
MIMO transmissions represent a cornerstone for achieving high data rates and reliability in wireless networks. 
This section discusses the role of AI in enhancing MIMO transmission techniques, covering topics such as 
beamforming with imperfect CSI, antenna muting strategies for power conservation, user pairing optimization, 
and pilot assignment for distributed MIMO systems. Each contribution underscores the application of AI to 
address specific challenges in MIMO transmission, showcasing the potential for improved network 
performance through intelligent algorithm design and implementation. 

6.3.1 Beamforming with imperfect CSI 
Problem statement: This work focuses on beamforming for downlink MU-MIMO transmission. MU-MIMO 
can significantly improve capacity in high-load scenarios but suffers from performance degradation when the 
channel state information is not perfectly known in the transmitter. Such imperfections could be caused by 
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channel aging, noise and compression artifacts from CSI Type II reporting schemes and others, as well as 
combinations of these.  

To reduce these detrimental effects, it is possible to train an ML model to compute precoders for a set of users 
given the estimated channels and the corresponding uncertainties.  

Methodology: The model is trained offline in a simulator, which means that it has access to the true channels. 
During training the ML model is trained by gradient ascent to maximize certain performance objective. Due 
to its simplicity, spectral efficiency was chosen as maximization objective. 

Let 𝑠u ∈ ℂ� be the transmitted symbols in the downlink. The received signal for user 𝑘 can be expressed as 

𝑦u = 𝐻u𝑊u𝑠u +∑ 𝐻u𝑊v𝑠v
QB'CD
v�1,v£u + 𝑛u, (6-2) 

where 𝑊u ∈ ℂQ2E×QDE is the precoding matrix for user 𝑘, 𝐻u ∈ ℂQDE×Q2E is the true downlink channel matrix 
for user 𝑘, and 𝑛u~ℂℕ�0, 𝜎u.� ∈ ℂQDE×1 is additive white gaussian noise for user 𝑘 with noise variance 𝜎u.. 
Furthermore, 𝑁�H;h is the number of users, 𝑁�i is the number of transmit antennas at the base station and 𝑁hi 
is the number of receive antennas at the UE. Precoders are assumed to be normalized to unit power per user, 
i.e., 𝑊u𝑊u

{=1 and 𝑁hi is assumed to be equal to 1. 

 

 
Figure 6-11: Block diagram for training of the proposed solution. Estimated channels (𝑯p ) together with estimates 

of various CSI imperfections (𝜹p) are fed to an ML beamformer that outputs precoders (W). 

In the proposed method (see Figure 6-11), a trainable block (ML Beamformer) calculates precoders (𝑊r) based 
on imperfect CSI (estimated channels, 𝐻;) and associated uncertainties (estimated uncertainties, 𝛿=). Training is 
done using gradient ascent through a differentiable critic (Evaluator) to maximize a given performance metric 
(𝒗). With this solution the performance metric needs to be a known and differentiable function of the selected 
precoders (𝑊) and the true channels (𝐻). 

Results: The approach has been evaluated for varying levels of channel aging and downlink SNR, and the 
results are shown in Figure 6-12. The UE speed is fixed to 10 m/s and the channel estimate delay is swept from 
0 to 4 ms. Here the channel estimate delay is defined as the delay from SRS transmission (uplink) to payload 
transmission (downlink). 

Except from the aging, channel estimates are ideal, i.e., there is no noise, hardware impairments or any other 
type of imperfections in the channel estimates. Performance obtained with the baseline signal to leakage and 
noise ratio (SLNR) precoder (dotted lines in Figure 6-12) are compared with the performance achieved using 
the ML beamformer (solid lines) in terms of spectral efficiency. It can be observed that when there is no 
channel aging (i.e., when the channel estimate delay is zero resulting in perfect channel estimates) the 
performance for the SLNR precoder and the ML approach are identical. As the amount of channel aging 
increases, the spectral efficiency decreases for both the ML and the SLNR solutions, but the performance of 
the SLNR solution drops off quicker resulting in a significant performance gap for high SNR when the channel 
aging exceeds ~2 ms. This performance improvement by the ML beamformer is due to its ability to form beams 
that are more robust to channel aging, for example by creating wider nulls for interfered UEs. It should be 

ML Beamformer
(actor)

Estimated
channels

Evaluator
(critic)

Performance
Metric

True
channels

PrecodersEstimated 
uncertainties

Trainable

Non-trainable, differentiable

Maximize
𝐻

𝐻

𝛿 𝑤
𝑣



Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 103 / 218 

 

noted that this gain is not due to any form of channel prediction since the ML beamformer does not have access 
to historical channel estimates or similar that would be required for such predictions. Hence, a full solution 
would benefit from both a prediction function that aims to predict future channel realisations, and where these 
predictions are fed to an ML beamformer together with associated uncertainty estimates that can help the ML 
beamformer to form robust beams when needed. 

 
Figure 6-12: Spectral efficiency comparison between the SLNR and ML beamformers.  

The ML beamformer shows improved robustness to channel aging and significantly outperforms the SLNR 
solution when the SNR is high. 

It should be noted that in Figure 6-12 no generalization over the channel estimate age was done. Instead, 
different models have been trained for the different channel estimate delays. In a practical solution a 
generalized model would be required. Further details can be found in the Appendix A.4.5.  

6.3.2 Antenna muting 
Problem statement: In this contribution, a transmit antenna muting (TAM) problem is formulated in the 
downlink (DL) transmission of a MU-MIMO setting. The TAM problem allows to reduce a base station’s 
power consumption (PC) by efficiently utilizing only a subset of antennas available at the BS (see Figure 6-13). 
To this extent, an optimization problem is formulated to minimize the number of active antennas at the BS, 
subject to per-user equipment (UE) throughput requirements. Prior to presenting the optimization problem, the 
system model and relevant assumptions are described here. 

 

 
Figure 6-13: (a) Fully Digital Antenna Array (b) TAM Conceptual Diagram. 
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Antenna panel assumptions: In the BS’s antenna panel, it is assumed that each antenna element (AE) is co-
located with its cross-polarized counterpart, thus demonstrating spatial correlation. The BS’s cross-polarized 
AEs are arranged into 𝑀��© vertical columns and 𝑀h�ª horizontal rows such that 𝑀 = 2 ×𝑀��© ×𝑀h�ª. Each 
AE is assumed to be driven by an RF chain and the co-located AEs are controlled by a single switch (refer to 
the Figure 7-18(a)). Therefore, for a given set of antenna indices ℳ��© ∶= @1,… ,>

.
A , let 𝐻u,𝒜 ∶=

	𝑯u𝑨𝒜 , 𝑯u,𝒜 ∈ ℂ�×> be the channel matrix of UE 𝑘, where 𝒜 ⊆ℳ��© is the active antenna element subset. 
Furthermore, 𝐴𝒜 ∶= 𝑑𝑖𝑎𝑔(�𝒂𝒜@ ,𝒂𝒜@ �) is the diagonal antenna activation matrix with BS antenna activation 

vector 𝒂𝒜 ∶= F𝑎1, … 𝑎F
4
G
@
∈ {0,1}

F
4×1 and the binary antenna element activation indicator is defined by: 

𝑎v ≔ 	 @1, 𝑖 ∈ 𝒜0, 𝑖 ∉ 𝒜 (6-3) 

for a given transmitter matrix 𝑾u,𝒜  and the channel matrix 𝑯u,𝒜 , the error covariance matrices, per-UE SINR 
𝛾u  and subsequently the per-UE rate, 𝑟u�𝑯u,𝒜 ,𝑾u,𝒜� can be computed using the analytical expressions 
provided in Section II of [RMW+23]. 

TAM optimization problem: The TAM problem of minimizing the number of active antenna elements 
subject to per-UE rate constraints capturing the QoS guarantees can be formally written as:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒</∈{�,1}		v|𝒂𝒜|v�	
𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜													𝑟u�𝑯u,𝒜 ,𝑾u,𝒜� ≥ 𝑟:v=, ∀𝑘,	
																																	v|𝒂𝒜|v� ≤ 𝑀 −𝑀:v=, 

(6-4) 

𝑟u�𝑯u,𝒜 ,𝑾u,𝒜� is the per-UE rate, 𝑟:v= is a predetermined value indicating the minimum allowed per-UE 
rate to guarantee the QoS requirements and 𝑀:v= is the minimum number of active antennas (per-polarization) 
in the BS which is also a predetermined value. The above formulation is targeted to primarily satisfy UEs’ 
QoS requirements while implicitly and opportunistically reducing the PC by selecting only a subset of antennas 
at the BS. 

Methodology: the above optimization problem (henceforth referred to as P1) is a constrained cardinality 
optimization (CCO) problem and non-convex in nature. On top of being non-convex, CCO problems in general 
also happen to be combinatorial in nature (NP-hard in this case) w.r.t the optimization variables. For instance, 
the processing runtime scales exponentially as the number of antennas increase at the BS in P1. To overcome 
the computational complexity issues posed by hand-tuned heuristic algorithms, which are typically used for 
solving CCO problems resembling P1, this work follows a data-driven approach. More specifically, a neural 
antenna muting (NAM) approach is proposed, where a feed-forward neural network architecture comprising 
of a single CNN layer followed by 2 dense layers is trained offline to solve the optimization problem in P1. 
Training is performed following the supervised learning approach, where the training inputs are given by 𝑿u =
[𝑅𝑒�𝑾u,��©�, 𝐼𝑚�𝑾u,��©�, 𝑅𝑒�𝑯u,��©�, 𝐼𝑚(𝑯u,��©)] and the corresponding labels are given by one-hot vectors 
𝒚 = 𝟏j ∈ ℝQ . Here, 𝟏j denotes an 𝑁-dimensional vector where the 𝑦�¦ element is one and zero otherwise, 
with 𝑁 being the number of array configuration classes (considered to be in [RMW+23]). 

The proposed NAM approach is compared with greedy heuristics as described in Section V of [RMW+23]. 
The proposed approach is evaluated w.r.t the spectral efficiency (SE) and power consumption, where SE is 
defined in terms of UEs’ throughput and the expression for PC is modelled after the radio frequency (RF) 
frontend power model provided in [HWW+18]: 

𝑃L��� ∶=	ª(𝑃L=~� +	+𝑃L=®Q� + 𝑃L=@¯��=°
QAG

=�1

+ 𝑃L=¤¯��=°) (6-5) 
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Where, 𝑃L=~� and 𝑃L=®Q� denote the PC of power amplifier (PA) associated with 𝑛�¦ (𝑛 ∈ 𝒩¤�)	RF chain	and 
low-noise amplifier (LNA) respectively. Similarly, 𝑃L=@¯��=° and 𝑃L=¤¯��=° denote the conversion unit PC of the 
𝑛�¦ RF chain, in the DL and uplink (UL) respectively. 

6.3.3 User pairing for MU-MIMO 
Problem statement: In modern wireless communication systems, optimizing resource allocation in multi user 
multiple-input multiple output (MU-MIMO) environments is crucial. A key challenge in MU-MIMO is user 
pairing and precoding, particularly under the constraint of limited channel state information. Traditional 
methods relying on full CSI are infeasible due to high overheads in data exchange. This challenge is evident 
in scenarios like the O-RAN Use Case 22 [ORAN23], where only partial CSI, including channel quality 
indicator (CQI), precoding matrix indicator (PMI), and buffer status, is available. 

This study aims to design a machine learning algorithm to efficiently select UEs for co-scheduling in MU-
MIMO using only partial CSI.  

Methodology: The focus is on leveraging reinforcement learning (RL), specifically the deep Q-network 
(DQN) algorithm [MKS+13], to address the challenges posed by limited channel information. The proposed 
algorithm aims to optimize the pairing and scheduling of UEs in a way that maximizes network efficiency and 
data throughput. 

The methodology involves modelling the MU-MIMO optimization problem as a Markov decision process 
(MDP), where states represent the environment's status (described in terms of users’ CQI, PMI and buffer 
status), actions are the selection of UEs for scheduling, and rewards reflect the efficiency of data transmission. 
The DQN algorithm exploits a deep neural network, shown in Figure 6-14, which takes in input the current 
state and provides as output the value of the possible actions, and it iteratively learns the action-state value 
function Q using the Bellman equation [JKH+19], thus guiding the agent (base station) to make optimal 
scheduling decisions. 

 
Figure 6-14: Neural Network model defined for DQN application to MU-MIMO pairing.  

A simulated MU-MIMO environment is used for training and testing the DQN model. The simulation includes 
factors like path loss, fast fading channels, spatial correlation, and a predefined set of UEs with data buffers. 
The DQN model is compared with traditional round robin (RR) scheduling and a greedy genie (GG) algorithm 
that uses full CSI for decision-making, as further explained in the Appendix (see Section A.4.6). 

Results: As shown in Table 6-2, the DQN algorithm significantly outperformed the RR method and closely 
matched the performance of the GG approach, which is considered an upper bound due to its access to full 
CSI. Specifically, the DQN solution was approximately 38% faster than RR in emptying UE buffers and only 
marginally slower than GG. Additionally, DQN achieved higher user and cell data rates compared to RR and 



Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 106 / 218 

 

nearly matched those of GG. This improvement in efficiency is attributed to the intelligent pairing and 
scheduling of UEs by the DQN algorithm, even with limited CSI. 

It should be noted that the current study has some limitations, including the idealized simulation environment 
and the potential for further optimization of the network in more complex scenarios. Future work is suggested 
to involve more advanced deep reinforcement learning techniques and comprehensive evaluations in realistic 
channel conditions. Still, results indicate that DQN, with its ability to make efficient decisions with limited 
information, is a promising approach for optimizing MU-MIMO in practical wireless networks. Further results 
are available in the Appendix (Section A.4.6).  

Table 6-2: Summary of simulation results of DQN application to MU-MIMO pairing. 

 Round Robin DQN Greedy Genie DQN vs RR DQN vs GG 

Average # of steps to empty all buffers 29,38 19,105 18 38,7% -8,3% 

Average user data rate [Mbps] 6,64 15,21 18,47 129% -17,6% 

Average cell data rate [Mbps] 20,2 36,4 38,7 81,7% -5,9% 

Corresponding Spectral Efficiency [bps/Hz] 2,02 3,64 3,87 81,7% -5,9% 

6.3.4 Pilot assignment for D-MIMO 
Problem statement: Channel estimation is a critical component in distributed MIMO (D-MIMO), as well as 
in almost every other communication technique. An estimated channel with high precision and minimal 
overloading may assist in the development of beamformers and precoders, as well as in localization and 
positioning. To estimate the channel, the UE send the pilot sequences to the AP, so that the pilot assignment 
becomes the crucial steps for estimating channel.  

In this work, the channel estimation phase is investigated in a model of a large-scale D-MIMO system, where 
the number of UE, M, and APs, K, could reach a significant amount. On behalf of the channel reciprocity 
characteristic of the time division duplex (TDD), the uplink and downlink channels can be regarded as 
identical. The UE and AP that are generated at random with the uniform distribution and spread over a large 
area in this work, and each AP is connected to a CPU via an error-free backhaul link. Due to applying mmWave 
channel, the blocker problem exists, and severe channel strength degradation occurs along the distance between 
the AP and UE, thus a considerable number of channels in D-MIMO can be ignored for each UE and AP. This 
work proposes a method for representing the pilot assignment as a colouring problem in a sparse graph, which 
is an NP-completed problem, and graph neural network (GNN) assisted reinforcement learning method will 
be used to solve the represented colouring problem. The graph representation method can be applied to nearly 
all D-MIMO systems, as its rules and objective function can be tailored to the communication problems at 
hand. 

Methodology: The work is divided into three stages: a) graphical representation; b) resolution of the 
corresponding graph problem; and c) communication performance evaluation of the result. 

  

   
(a) D-MIMO system (b) bipartite graph (c) conflict graph 

Figure 6-15: From D-MIMO system model to graph representation. 
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Before proceeding into the details of the scheduling strategy, it is possible to represent the connection structure 
of the D-MIMO system as a bipartite graph, as shown in Figure 6-15. Initially, a D-MIMO system (Figure 
6-15 (a)) is converted into a bipartite graph (Figure 6-15 (b)), with the nodes at the bottom representing the 
UE and the upper nodes representing the AP. If an edge connects two nodes, xm∈[M], yk∈[K], it indicates that 
the channel strength gmk is greater than the threshold that is implemented. A bipartite graph can effectively 
illustrate the connection structures of D-MIMO. The purpose of this communication problem is to solve a pilot 
assignment problem considering the interference between the UEs. Therefore, the bipartite graph is utilized to 
generate the conflict graph as Figure 6-15 (c) according to the rules: 

1. Each UE represents the node in the conflict graph. 
2. Only the interference channel that cannot be disregarded is considered. 
3. The edge in the conflict graph should be connected, if and only if two UEs have overlapped connection 

in one AP. 

The conflict graph has effectively transformed the interference information. Figure 6-15 (c) is the conflict 
graph representation that corresponds to Figure 6-15 (b). Evidently, this enables the development of a visible 
scheduling strategy, as no two adjacency nodes may designate the identical assigned sequence. The graph 
colouring rule is identical to such a schedule rule [BM82]. In this work, the UE scheduling uses a rapid AI-
based graph colouring method [SYH+23]. This method is applicable to dynamic scenarios with moderately 
fast and can also be used to coordinate parallel UE scheduling strategies across multiple clusters. The learn-
to-code on graph (LCG) colouring method is illustrated in the Appendix in Section A.4.7. Consequently, the 
edges ought to be assigned orthogonal pilot sequences. Such a rule corresponds to the graph colouring problem. 
Then, based on the bipartite graph, a conflict graph can be generated to display interference information 
between UEs. Following the resolution in this part, the coloured graph result should be transferred to the 
specified pilot assignment strategy.  In the simulation section, the desired channel is estimated using the pilot 
assignment strategy and evaluate the uplink user rate as the metric. 

 
Figure 6-16: Cumulative Distribution Function plot of user’s rate. 

Results: With respect to the D-MIMO model, the mmWave frequency band, 28 GHz is adopted, the bandwidth 
is 100 MHz, a 1 km×1 km region is generated utilizing 100 UEs and 200 APs each with a single antenna. As 
robust connections, the greatest N=8 APs are chosen by each user, and the number of pilot dimension 𝑇� = 8. 
With respect to the training of LCG, the Erdős–Rényi (ER) random graph is utilized as the data set. This work 
utilizes a random dataset consisting of four colours (𝑇=7,8,13,14). The number of colours is denoted by 𝑇, 
which is also the number of pilot dimensions in training phase. In order to facilitate comparisons with 
alternative methodologies, both random assignment and a previously proposed pilot assignment method are 
considered; the latter is a maximum distance separable (MDS)-code based pilot sequence presented in 
[YGY+23]. The simulation result is illustrated in Figure 6-16. Evidently, the LCG-based colouring method 
exhibits superior performance to the MDS method, even when applied to the same pilot dimension. This is due 
to the fact that the LCG-based colouring technique employs the orthogonal pilot sequence in UEs, whereas the 
MDS-based method generates non-orthogonal pilot sequences. It should be noted that the number of pilot 
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dimensions also should be selected properly as shown in the plot with 5 colours in Figure 6-16. Because a 
small pilot dimension incurs considerable interference that cannot be mitigated. 

6.3.5 Access point selection and uplink power control for D-MIMO 
Problem statement: distributed massive MIMO, or cell-free MIMO allows serving a set of users in a given 
area using same time-frequency resources via a set of distributed access points which are connected to a CPU, 
without traditional cells or cell-boundaries. These architectures provide more uniform service performance for 
the users in terms of spectral efficiency and improve connection robustness due to the additional spatial 
diversity. Proper resource allocation such as power control, fronthaul link management etc. can further improve 
the network performance, however, the traditional optimisation techniques could be practically infeasible due 
to their computational complexity and lack of flexibility. Machine learning techniques can be exploited to 
solve these resource allocation problems in a data-driven way with a reduced complexity, instead of using 
optimisation-based solutions. 

In [RMR+21], unsupervised learning-based uplink power control is proposed to maximise the minimum user 
rate in a cell-free network. It is extended in [RMR+23] to learn the joint uplink power control and fronthaul 
capacity allocation by directly training a deep neural network to maximise the sum rate objective. Although 
they have shown similar or better performance compared to the conventional optimisation-based solutions and 
a significantly lower computational complexity, both studies considered a full cell-free architecture where all 
the users are served by all the access points in the network which is not scalable in practice. In this work, an 
AP selection approach is proposed to enable scalable D-MIMO implementation where each user is served by 
only a fraction of the APs in the network. Uplink power control is also utilised to further improve the sum rate 
performance. 

Methodology: A D-MIMO system which consists of 𝑀  single-antenna APs and 𝐾  single-antenna users 
randomly distributed in a 𝐷	 × 𝐷 geographic area is considered. The APs are connected to a CPU via backhaul 
connections. Each user is connected to a set of APs ℳu, where ℳu 	⊂ 	ℳ where ℳ = {1,2, … ,𝑀} is the full 
set of APs in the network. Initially, all the users undergo a pilot transmission phase to estimate the uplink 
channel coefficients. The minimum mean square error (MMSE) channel estimation is done at each AP after 
the pilot transmission. Then, during the uplink data transmission phase, all the users simultaneously send their 
transmit signals to all the APs. Match filtering is done at each AP using the estimated channels, and the scaled 
received signals are sent to the CPU for joint detection. The aggregated received signal at the CPU is used to 
detect the transmit signals. The uplink rate for the 𝑘th user, 𝑅u

��©v=u, can be derived using the channel statistics, 
which is a function of user power allocations 𝜂u 	and the serving AP set ℳu , 𝑘 = 1,2, … , 𝐾. The following sum 
rate maximisation problem is then formed to select the best set of APs to serve each user and to determine the 
user power levels to maximise the system sum rate subject to the throughput constraints for the minimum user 
rates.  

P1: max
±-,ℳ-		

										 ∑ 𝑅u
��©v=u�

u�1  

subject to  𝑅:v= ≤	𝑅u
��©v=u ,			𝑘 = 1,2, …𝐾, 

|ℳu| 	≤ 𝑎	|ℳ|, 𝑘 = 1,2, …𝐾, with 0 < 𝑎	 ≤ 1	a fixed design parameter. 

0	 ≤ 𝜂u 	≤ 1,			𝑘 = 1,2, …𝐾. 

(6-6) 

Problem P1 is a non-convex multi variable optimisation problem which needs convex approximations and 
iterative algorithms to obtain solutions. To overcome this challenge, an ML model is trained to predict the 
outputs without directly solving the sum rate optimisation problem. Specifically, a DNN which takes in large-
scale channel coefficients between the users and the APs is trained to learn the AP selection and power control 
outputs by taking the negative Lagrangian of the optimisation problem as the loss function. It is assumed that 
the large-scale channel statistics are available, and that the control signalling and other required D-MIMO 
architectural components are in place, providing centralised processing and ideal synchronisation between 
APs. 
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Figure 6-17: Sum rate performance with AP selection and power control for a cell-free network with 50 APs and 

10 users. 

Results: Some initial results for a system configuration of 50 APs and 10 users are shown in  Figure 6-17, 
where the sum rate performance is evaluated for different algorithms including the DNN for AP selection and 
power control. For the AP selection procedure, the parameter is set to 𝑎 = 0.4, so that each user is served by 
40% of the APs in the network. Further improvements to the DNN model architecture, hyperparameter tuning 
and dual variable optimisation are ongoing, especially to optimise the dual variables or Lagrangian parameters 
in the loss function to enable improved model convergence. 

6.4 AI solutions for hardware impairments 
Hardware impairments, particularly in the power amplifier, can significantly affect the performance of wireless 
communication systems. This section explores an AI-driven approach to compensate for such non-linearities, 
offering insights into how artificial neural networks can be deployed to improve transmission quality by 
mitigating hardware-induced distortions. Highlighting the adaptability and effectiveness of AI in addressing 
physical layer challenges, the contributions illustrate the growing importance of artificial intelligence in 
overcoming inherent limitations of wireless hardware components. 

6.4.1 AI-based PA-nonlinearity compensation 
Problem statement: Non-linearity of wireless transceivers, specifically power amplifier (PA) hardware 
imperfections, introduces in-band and out-of-band distortion. These distortions could pose major limitations 
towards having high throughput, and cost and energy efficient wireless communication systems. Such limitations 
from PA are typically compensated in the transmitter, e.g., by applying power back-off or performing digital 
predistortion (DPD) aiming to linearize the transmitter. However, applying PA power back-off leads to lower 
energy efficiency, and lower output power, and hence lower coverage; and performing DPD results in higher 
complexity of the transmitters.  
To this end, a receiver technique using artificial neural networks (ANN) de-mapper was proposed in [FHS23] to 
compensate for the PA non-linearity in the receiver side, when DFT-s-OFDM (Discrete Fourier Transform – 
spread-OFDM) signal transmission was considered, with performance evaluations performed in FR1, in the 
presence of memoryless PA for a single antenna setup. This work extends the work in [FHS23] to FR2, in the 
presence of memory PA, and for multi-antenna setting.  

Methodology: This study proposes an AI-driven receiver for PA post distortion compensation. The proposed 
method uses an ANN de-mapper to compensate for the PA memory impacts in the receiver side, when DFT-s-
OFDM signal transmission is considered. The receiver performs channel estimation using reference signals and 
conducts equalization using the estimated channel state information. The proposed ANN de-mapper performs per 
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resource element soft bit de-mapping of received signal before channel decoder. The block diagram of such an AI-
driven receiver is shown in Figure 6-18. 

 
Figure 6-18: AI-empowered receiver for PA compensation. 

ANN de-mapper is a fully connected neural network (FCNN) where the inputs are real and imaginary part of the 
equalized received symbol and the SNR estimates in the receiver. The outputs are log likelihood ratio values 
corresponding to the transmitted coded bits.  

Results: A fixed throughput scenario is considered; in this case, given that the system is not power limited, 
the UE operates at an as efficient operating point as possible in the network to reach a given throughput level. 
The intention is to investigate with a new standard specification how energy efficient the UE can operate 
leveraging on this new feature. 

In this scenario, the gain in energy efficiency is dependent on the power efficiency profile of the PA and the 
operated throughput level. For the considered class A PA model, as shown in Figure 6-19, energy reduction 
gains in the range of 35%-45% are observed at throughput levels in the range of 1.6-2.0 Gbps. In this figure, 
the x-axis shows the fixed/assumed throughput, and the y-axis show the relative energy consumption needed 
to reach the assumed throughput for the legacy receiver (no ML) and the AI-driven receiver subject to different 
PA back-off levels.  

 
Figure 6-19: Energy efficiency versus throughput performance for different operating points. 

The AI-driven receiver for PA post distortion feature has been evaluated in an UL FR2 scenario using up to 
256QAM modulation and 400 MHz allocation to trigger memory effects from the PA model. The findings are 
as follows: throughput can be improved, up to ~15%, both with and without standard changes in both non-
power limited and power limited scenarios; UE energy efficiency can be improved 11-45% when transmitting 
with higher order modulations; Coverage throughput for higher order modulations can be improved 2-3 dB. It 
should be noted that these evaluations are carried out without UE PA model known to be representative of 
current UEs, and conclusions will be impacted by the UE implementation. 
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7 Joint communications and sensing  
In recent years, there has been an unprecedented surge in the demand for precise sensing and localization 
services, driven by the emergence of innovative use cases and applications. From the advent of self-driving 
cars and unmanned aerial vehicles to the intricacies of controlling indoor robotics, virtual and augmented 
reality environments, and the development of digital twins, diverse sectors are now reliant on sensing services. 
Each application presents its own distinct criteria for sensing and localization accuracy, availability, and 
reliability. Responding to this burgeoning need, the International Telecommunications Union (ITU) has 
identified joint communication and sensing (JCAS), also referred to as integrated sensing and communications 
(ISAC), as a cornerstone of the upcoming 6th generation (6G) of cellular communications. The pursuit of 6G 
JCAS entails a multifaceted exploration within the research community. This involves delving into various 
deployment scenarios and their corresponding sensing and localization performance, while also devising 
optimization strategies to fulfil both the sensing and communication requirements. This section presents the 
preliminary results of exploring these two paths. Hence, the section is divided into two parts, JCAS 
deployments and JCAS resource optimization. The works included herein encompass a wide range of 
assumptions regarding the employed 6G radio. These assumptions encompass a spectrum of factors, ranging 
from hardware impairments to the availability of diverse radio resources. They also account for different 
deployment scenarios, such as the quantity and capabilities of both user equipment and base stations. By 
considering these multifaceted aspects, researchers aim to construct a comprehensive understanding of the 
challenges and opportunities inherent in the integration of sensing and communication technologies within the 
framework of 6G JCAS. 

7.1 JCAS deployments 
In this subsection, three sensing and localization deployment scenarios are investigated. Namely, the section 
investigates non-terrestrial networks (NTN) and reconfigurable intelligent surfaces (RIS)-aided localization, 
integrated monostatic and bistatic sensing, and multistatic sensing.  

7.1.1 NTN and RIS-aided localization  
Problem statement: The goal is to optimize the estimation of the 3D position, velocity, and orientation of a 
single user equipment (UE) in an outdoor environment (urban and sub-urban). Optimization in this context 
means minimizing both the Crámer-Rao bound (CRB) and the actual variance of the estimated states as well 
as increasing the availability of the positioning solution. The positioning setup incorporates a single base 
station (BS), a low-earth orbit (LEO) satellite, and a RIS. The study utilizes downlink (DL) orthogonal 
frequency division multiplexing (OFDM)-based positioning reference signals (PRS) at both FR1 (2 GHz) and 
FR3 (10 GHz). The available bandwidth for FR1 and FR3 is100 MHz (30 KHz sub-spacing) and 400 MHz 
(120 kHz sub-spacing), respectively. The terrestrial BS has access to a uniform rectangular array (URA) while 
the satellite has access to a directive dish antenna. The UE, on the other hand, has two setups, one of which 
has access to a single omnidirectional antenna, while the other has access to an URA. In the first case, UE 
orientation is not estimated. As the setup utilizes DL signals, localization takes place at the UE side. Hence, 
the UE is expected to conduct channel estimation from raw I/Q samples. Here, channel estimation includes the 
estimation of the delays, Doppler shifts, and complex channel gains for each path. Ultimately, the UE has 
access to four line-of-sight (LoS) time of arrival (TOA) measurements from the direct terrestrial network (TN) 
and NTN paths and the TN-RIS and NTN-RIS paths, two angle of departure (AOD) measurements from the 
RIS (vertical and horizontal) paths, two angle of arrival (AOA) measurements (in case of 2D array at UE side), 
as well as three Doppler measurements from each technology. In this study, three problems are considered, a 
long-term deployment optimization problem, a short-term resource optimization problem, and a positioning 
estimation problem. The long-term optimization of the setup includes optimizing the placement of the BS and 
RIS and the orbit of the LEO satellite. On the other hand, short term optimization includes precoding, resource 
allocation, and RIS configurations. Finally, the estimation problem includes optimizing localization algorithms 
and methodologies to fuse the measurements provided by the setup. Here, both the snapshot estimation 
problem (i.e., the states are not dynamic) and the tracking problem are considered. This work considers the 
following assumptions: LEO altitude is 600 km; RIS is controlled by the network; BS and LEO are time 
synchronized; UE has time bias and carrier frequency offset (CFO) (to be estimated); LoS between UE and 
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the BS, LEO, and RIS; LoS paths are resolvable (due to the high bandwidth); constrained LEO-UE link budget 
and atmospheric effects (effects of scintillation, gases, and clouds); and the UE is installed in an autonomous 
vehicle (vehicular motion models, 100 km/h max speed). 

Methodology: As the problem is complex, a simplified scenario is considered first and then complexities will 
be added at later stages to achieve the scenario highlighted above. In this report, the focus is directed to an 
NTN-RIS scenario only with a static UE that has access to a single antenna element. Here, the goal is to 
estimate the position of the UE only (i.e., velocity and orientation are not estimated). Additionally, it is 
assumed that the UE receives two paths only (i.e., NTN-UE and NTN-RIS-UE paths with multipath 
components resolved and discarded). A raytracing-based channel model was derived for each path and was 
then used to compute the channel fisher information matrix (FIM). The channel FIM incorporates information 
on the four channel gains (real and imaginary components for each path), two delays, two Doppler coefficients, 
and two RIS AODs. It is worth noting that the derivation assumes random RIS configurations. Next, a 
transformed FIM was derived for positioning estimates which included the four channel gains, the 3D position 
of the UE, the time bias, and the CFO. Finally, a maximum likelihood estimator (MLE) was implemented to 
estimate the delay and the Doppler coefficient for both paths. The MLE utilized a simple iterative linear search 
algorithm with a dynamic grid size to find the estimates. The next step is to implement a second MLE to 
estimate the 3D position of the UE given the estimated delays, Dopplers, and the RIS AOD measurements.  

Results: A MATLAB-based simulation setup was developed where the position and orientation of the RIS 
can be chosen in a global coordinate system and the UE is placed in a study grid. Additionally, a simple script 
was developed to compute the position and velocity of the LEO satellite based on the given angle of ascension, 
elevation angle, and altitude. Such computation enhances the credibility of the results generated. The 
deployment information of the UE, RIS, and LEO are then passed to a script that computes the channel and 
position FIM and CRB as well as the MLE estimates. Finally, the CRB is used as a benchmark to assess the 
performance of the investigated algorithms. The parameters utilized in these experiments shown in Table 7-1. 

Table 7-1: Simulation parameters of RIS and NTN-aided localization scenario. 

Parameter Value Parameter Value 
Carrier frequency 2 GHz Sync. bias ~1 ns 
Sub-carrier spacing 30 kHz CFO coefficient ~1 ppm 
Bandwidth 100 MHz (3300 SC) Modulation QPSK 
RIS # elements 100 (10x10) RIS element spacing l/2 
UE noise figure 7 dB UE noise PSD -174 dBm 
UE gain 1 dB Satellite gain 30 dB 
Atmospheric gasses loss 0.1 dB LEO EIRP density 34 dBW/MHz 
Scintillation loss 2.2 dB Shadow fading loss 3 dB 
UE position (in meters) 𝑥 = 0, 𝑦 = 5, 𝑧 = 1.5 RIS position (in meters) 𝑥 = 0, 𝑦 = 0, 𝑧 = 10 
LEO position/velocity Variable RIS orientation Towards y-axis (north) 

In this study, the effect of the satellite orbit settings on the various channel parameters are investigated. The 
elevation angle and the ascension node (AN) (also known as the azimuth angle) of the satellite were swept 
from 0 to 90 degrees and 0 to 180 degrees, respectively. The effect of these angles on the signal-to-noise-ratio 
(SNR) for each path is shown in Figure 7-1. The corresponding CRBs of the respective TOA and position 
estimates are shown in Figure 7-2. It can be seen that the AN does not have any effect on the SNR of the direct 
NTN-UE path. On the other hand, the SNR increased quadratically as the elevation increased, which can be 
attributed to the linear decrease in the NTN-UE distance. The NTN-RIS-UE path, however, was affected by 
both the AN and the elevation angle. To be specific, the SNR reached a maximum around AN = 90 degrees 
(i.e., when the LEO was directly in front of the RIS) and rapidly decreased as the LEO ascended from angles 
that are further away from the boresight of the RIS. This decrease in SNR can be attributed to the decrease of 
the effective area or the radar cross-section of the RIS. Contrary to the previous effects, the effect of the 
elevation angle on the SNR of the NTN-RIS-UE path is non-monotonic as it affects the SNR in two opposite 
ways. First, as is the case with the NTN-UE path, the SNR is directly proportional to the elevation angle due 
to the decrease in NTN-RIS distance. Second, the SNR is inversely proportional to the elevation angle due to 
the decrease of the effective area of the RIS as the LEO elevates higher in the sky. The effect of the SNR is 
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directly reflected in the CRB of the TOA estimates of both paths and the positioning estimate. Finally, it is 
noteworthy to comment on high discrepancy between the average SNR of the NTN-UE and the NTN-RIS-UE 
paths. It can be seen that, on average, the NTN-RIS-UE path is 35 dB less than the direct NTN-UE counterpart. 
This is mainly attributed to the well-known double distance effect that RIS suffers from. Hence, it is advised 
to investigate active RIS elements for such scenarios in future works. 

  
(a) NTN-UE (b) NTN-RIS-UE 

Figure 7-1: SNR of the NTN-UE and NTN-RIS-UE path. 

   
(a) NTN-UE (b) NTN-RIS-UE (c) Position 

Figure 7-2: CRB of TOA of NTN-UE, NTN-RIS-UE, and position. 

7.1.2 Integrated monostatic and bistatic sensing 
Problem Statement: Two common modalities used in mmWave sensing are monostatic and bistatic sensing, 
which are usually considered separately. However, the two modalities can be employed simultaneously. The 
goal of this study is to integrate monostatic and bistatic sensing to improve the sensing performances. In the 
considered scenario, the BS sends out downlink signals, and those signals can reach the UE via LoS and non-
LoS (NLoS) paths. The UE performs the channel estimation to get the AOA, AOD and TOA estimates of the 
paths, and then performs bistatic sensing to estimate the UE position, heading, clock bias with the BS, and the 
map of the surrounding environment. The downlink signals can also be bounced by the landmarks in the 
environment back to the BS. The BS performs channel estimation on the received signals to get the AOA and 
TOA estimates and perform monostatic sensing to map the surrounding environment. Since both bistatic 
sensing and monostatic results contain the information on the UE and the map, by integrating these two 
modalities, information can be shared between them, leading to improved sensing performance. This work 
considers the following assumptions: a single BS and a single UE; BS position is known; channel estimation 
is implemented; and only LoS or single-bounce NLoS signals are received. 

Methodology: The main components of the block diagram shown in Figure 7-3 include the simultaneous 
localization and mapping (SLAM) filter at the UE side for bistatic sensing, the mapping filter at the BS side 
for monostatic sensing, and the periodic fusion at the fusion centre. For bistatic sensing, given the received 
signals at the UE side and the knowledge of the sent signals and combiner, the channel estimator can recover 
the geometric information of the multi-path components (MPCs), like the delays, angles of arrival, and angles 
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of departure, which are a function of the UE state and the map. Then an extended Kalman-Poisson multi-
Bernoulli (EK-PMB) SLAM filter is implemented to map the landmarks and also localize the UE. For 
monostatic sensing, a channel estimator can be applied on the received signals at the BS side to estimate delays 
and angle of arrivals. Then, a PMB mapping filter is implemented to map the landmarks and also the moving 
UE. Once these two sensing results are available, they fused together. This can be done by firstly matching 
two maps, which would tell whether a given landmark should be fused with a corresponding landmark in 
another map or should it be fused with the background. Then, components in two maps should be fused 
accordingly. 

 
Figure 7-3: The framework of integrated monostatic and bistatic sensing. 

Results: The proposed framework is evaluated by simulation. The simulated scenario contains a single BS and 
a single UE which does a constant turn-rate movement around the BS. There are 4 virtual anchors (VAs) and 
4 scatter points (SPs), which represent reflecting surfaces and small objects, respectively. Every time step, the 
BS sends out downlink signals. The simulation parameters are listed in Table 7-2. 

Table 7-2: Simulation parameters for integrated monostatic and bistatic scenario. 

Parameter Value Parameter Value 

Carrier frequency 28 GHz Reflection coefficient  0.7  

Number of symbols 16 Radar cross section  50 m2 

Bandwidth 200 MHz Range of view 50 m 

Number of subcarriers 64 Detection probability  0.9 

UE Noise figure 20 dBm Fusion frequency Every 5 time step 

Transmitter power 35 dBm Monte Carlo simulations 100 

The implementation of the EK-PMB (SLAM) filters can map the VAs and SPs in the environment and position 
the UE state simultaneously in bistatic sensing and map the incidence points (IPs) in the environment as well 
as the passive UE in monostatic sensing. The results also indicate that periodic fusion of monostatic and bistatic 
sensing helps the filters to acquire better mapping and SLAM performances in monostatic and bistatic sensing, 
respectively, as the generalized optimal sub-pattern assignment (GOSPA) distances in Figure 7-4 and root 
mean square errors (RMSEs) in Figure 7-5 are lower. The bistatic map introduces the landmark types to the 
monostatic map, as GOSPA distances for VA and SP in monostatic sensing drops after fusion while they 
remain unchanged without fusion. The monostatic map also introduces the unseen landmarks to the bistatic 
map, as the GOSPA distance for SP in bistatic sensing directly drops after the first fusion. 

SLAM filter

Map matching

Input: prior UE state, 
MPCs for bistatic sensing

Input: MPCs for 
monostatic sensing

Output: Fused map 
and UE state

Mapping filter

Component updating

Map fusion
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(a)  (b) 

Figure 7-4: Comparison of mapping performance of a) bistatic sensing and b) monostatic sensing for cases with 
and without periodic sensing. 

 
Figure 7-5: Comparison of UE state estimation in bistatic and monostatic sensing between two cases: with and 

without fusion. 

7.1.3 Multistatic sensing 
Problem Statement: Section 7.2.1 establishes the rationale behind the use of bistatic sensing when combined 
with the legacy 5G OFDM-based waveforms as the sensing waveform. Even though such a solution presents 
itself as a strong candidate for the JCAS functionality in the forthcoming 6G networks, its performance is 
limited by the fundamental limits of bistatic sensing. A possible way to improve the performance of a sensing 
procedure in a cellular JCAS network is to leverage the redundancy of the existing nodes. The use of multiple 
sensing nodes for sensing a space of interest promises performance improvement via diversity. In particular, 
the sensing of a space from different directions using different nodes is expected to have a better performance. 
This is because, even though a portion of the undertaken sensing measurements might be of poor quality, with 
the sophisticated fusion of the separate measurements, the performance can be significantly improved. Thus, 
in this study, the aim is to explore the performance of multistatic sensing when it is composed by multiple 
bistatic sensing measurements. This work has the following assumptions: 1) multistatic sensing composed by 
multiple separate bistatic radar sensing measurements; 2) omni-directional or directional transmission and 
directional reception; 3) plethora of transmit and receive nodes; 4) possibility of central processing; 5) perfect 
synchronization between involved nodes; and 6) realistic channel modelling (LoS and NLoS propagation 
paths). 

Methodology: The block diagram of the multistatic sensing considered in this study is given in Figure 7-6. As 
shown in this figure, a sensing node transmits radar signals which after being reflected by a target of interest 
are collected by a number of nodes distributed in the surrounding space. Under the assumption that all 𝑵𝒎 
reception nodes are synchronized with the transmitting node, each reception node undertakes its own bistatic 
sensing measurement. Note that the receiving nodes do not have to be synchronized to each other. The result 
of the 𝒊-th, 𝒊 = 𝟏,… ,𝑵𝒎, bistatic radar sensing is then conveyed to the sensing processing unit (SPU). The 𝒊-
th reception node is able to provide the following measurements/estimates, 𝒎𝒊 = {𝛉𝐢,𝛟𝐢, 𝐒𝐢,𝐃𝐭

(𝐢),𝐃𝐫
(𝐢), 𝐫𝐢}, to 

the SPU.  With reference to the implementation of bistatic sensing in Figure 7-8.  𝜽𝒊 and 𝝓𝒊 are the estimated 
vertical and horizontal AOAs, respectively, of the incoming signal, reflect by the target of interest, in the local 
coordinate system (LCS) of the 𝒊−th reception node; 𝑺𝒊, 𝑫𝒕

(𝒊), and 𝑫𝒓
(𝒊) are the estimated distance of flight 

between the transmit node-target-receive node, transmit node to target distance, and the target to receive node 
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distance, respectively; and 𝐫𝒊 is the estimated position of the target in the network global coordinated system 
(GCS).   In the final step, the SPU fuse the 𝑵𝒎 separate bistatic sensing in order to measure the quantities of 
interest. Thus, the estimate of the 3D position of target of interest can be obtained as 𝐫ï = 𝒇�𝒎𝟏, … ,𝒎𝑵𝒎�, 
where 𝒇(⋅, … ,⋅) is the used fusion function. In this work, the aim is to explore the performance improvements 
of the 3D positioning of the multistatic sensing of Figure 7-6, when each separated bistatic sensing is 
implemented as the bistatic radar sensing described in Figure 7-8.  The evaluation of each bistatic sensing is 
done using either a theoretical analysis or using simulation results. 

 
Figure 7-6: Multistatic sensing composed by a number of 𝑵𝒎 independent bistatic measurements. 

 
(a) RMSE of the estimate of 𝜃 

 
(b) RMSE of the estimate of ϕ 

 
(c) RMSE of the estimate of 𝐷b	(RX to target 

distance) 

 
(d) RMSE of the estimate of 𝑥wdebfgd 

Figure 7-7: RMSE performance of a typical underlying bistatic sensing of the type of multistatic sensing 
considered in this study. 

Results: In this study, as the fusion of the 𝑁:  independent measurements, 𝑚v = {𝜃v , 𝜙v , 𝑆v , 𝐷�
(v), 𝐷h

(v), 𝐫v}, 𝑖 =
1,… ,𝑁:,  is done in a non-coherent way in the SPU, one approach for improving the performance of the 
multistatic radar sensing described before is to improve the performance of the 𝑁: underlying bistatic sensing 
procedures undertaken separately in each sensing node. For a given deployment and provided sufficient 
synchronization between the transmitting node and each receiving node, the performance of each bistatic 
sensing is improved via the use of more sophisticated radar signal processing techniques. This is illustrated in 

Sensing 
processing 
unit
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Figure 7-7 where the performance of a typical bistatic is evaluated, composing radar sensing in terms of 
ranging, AOA estimation, and 3D positioning. This is done for the cases when the AOA is done using the non-
parametric method of DFT beam-sweeping and the parametric method of 2D MUltiple SIgnal Classification 
(MUSIC). In this figure, the RMSE performance is undertaken using a bistatic deployment where the channel 
model is based on ray tracing in 3.5 GHz. The transmitting and the receiving nodes are equipped with a dual-
polarized 10 × 10 and 8 × 8 rectangular antenna panels, respectively. For capturing the optimal possible 
performance, the antenna panels are oriented, in a genie way, towards the target of interest. Note that the 
parameterization of MUSIC is set to be correct in a genie way. Finally, the used waveform is OFDM with 
reference signal generated using a Zadoff–Chu sequences. The observation of Figure 7-7 a) and b) shows that 
the MUSIC AOA estimated outperform the DFT beam-sweeping, as expected, despite the presence of clutter. 
In Figure 7-7 c) it can be seen that both methods have a similar ranging performance in the SNRs of interest. 
However, as shown in Figure 7-7 d), the MUSIC based processing outperforms the DFT beam-sweeping 
approach in terms of 3D positioning of the target of interest. This is due to the better estimation of the AOA 
of the received signal reflected by the target of interest. Finally, in all subfigures of Figure 7-7, a performance 
saturation is observed in high SNRs. This saturation is the result of clutter that needs to be treated.  

7.2 JCAS resource optimization 
In this subsection, three optimization scenarios are considered. Namely, the subsection investigates the 
optimization of OFDM-based bistatic systems, resource allocation for multi-band systems, resource allocation 
of 6D (position and orientation) tracking in JCAS systems, and resource allocation and protocols for inter-UE 
JCAS systems. 

7.2.1 Optimization of OFDM-based bistatic sensing 
Problem Statement: Cost and implementation reasons dictate that the legacy of the previous generations of 
cellular communications, i.e., 4G and 5G, will have, up to an extent, an impact in the forthcoming 6G wireless 
communication networks. One of the elements of 4G that influenced the development of 5G is the used OFDM 
waveform and its adopted numerologies. The projection of this trend indicates that OFDM and its variant 
discrete Fourier transform (DFT) spread-OFDM (DFTS-OFDM) are strong candidates, at least for the most 
common bands. This rationale is further enforced by the expected coexistence of 5G and 6G for the initial 
stages of the 6G deployment. Consequently, OFDM and its variants pose also as strong candidates for future 
JCAS functionality of 6G. Conceptually, the simplest form of sensing is monostatic sensing. However, 
monostatic sensing requires the transmitter and the receiver to be collocated. Therefore, a monostatic 
transceiver faces implementation challenges originating mainly from the requirement of the full duplex 
operation. An alternative that does not require full duplex operation is bistatic sensing, where the transmitter 
and the receiver are geographically separated. Furthermore, the plethora of nodes (base stations and UEs) in a 
cellular network, which can act as candidate sensing nodes, indicates a performance robustness. This can be 
achieved via the appropriate selection of the two involved sensing nodes. Based on the previous short analysis, 
it becomes clear that bistatic sensing using the OFDM waveform, with a parameterization that closely follows 
the corresponding communication parameterization, presents as an attractive solution for the JCAS 
functionality in 6G. Thus, the aim of this study is to explore the fundamental performance of bistatic sensing 
when the used waveform is the communication based OFDM. This work assumes the following: 1) perfectly 
synchronized transmit and receive nodes; 2) omni-directional or directional transmission using the required 
transmit antenna setup and beamforming (for the directional case); 3) directional reception using the required 
receive antenna array and (DFT) beamforming; 4) realistic channel modelling where both the useful 
propagation paths and clutter are present; 5) OFDM parameterization that closely follows the 5G 
parametrization and variations of it. 

Methodology: The block diagram of the bistatic sensing of interest based on the OFDM waveform is given in 
Figure 7-8. In more detail, it is assumed that the bistatic sensing of interest is undertaken using a train of 𝑁H 
periodic OFDM symbols. Each symbol is generated assuming an allocation of 𝑁C! subcarriers and a given 
numerology. The allocation of the sensing subcarriers is done either using dedicated sensing signals or other 
existing reference signals. In the transmitter, once the signal is transformed in the time domain and before its 
transmission a cyclic prefix (CP) is added, or a guard interval (GI), or a unique codeword (UCW). The duration 
of the CP (or GI or UCW) is selected such that its duration is longer than the longest time of flight (TOF) of 
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interest. At the receiver side, upon the reception of an OFDM symbol, the CP (or GI, or UCW) is removed 
before the received signal is transformed to the frequency domain. The following step includes matched 
filtering in the frequency domain. Upon the reception of the 𝑁H OFDM symbols of interest, for the estimation 
of the quantities of interest (range, 3D positioning, and velocity), additional radar signal processing is 
undertaken, such as the calculation of the Doppler-delay representation of the 𝑁H OFDM symbols and the 
corresponding peak finding.  

 
Figure 7-8: Bistatic sensing using OFDM. 

Results: In this study, the aim is to characterize the limitations set by the duration of the CP on the maximum 
permissible distance between the receiving node and a target that can be sensed. For this reason, it is assumed 
that the bistatic sensing of interest is implemented as shown in Figure 7-9. More specifically, the operating 
principle for estimating the Target-to-RX distance 𝐷h, the TX-to-Target distance 𝐷�, and the position of the 
target, 𝐫, rely on the measurement of the time of flight (ToF) of the propagation path between the TX-Target-
RX and the knowledge of the angel 𝜓h, which is the AoA in the RX. From the measured ToF, the distance of 
flight, 𝑆 = 𝐷� + 𝐷h , can be obtained. Also, the TX-to-Target distance is expressed as, 𝐷� = �𝑆. + 𝐷�. +
2𝑆𝐷�cos𝜓h�[2(𝑆 − 𝐷�cos𝜓h))]21, where, 𝐷� is the TX-to-RX distance; the distance 𝐷h is given as,  

𝐷h = �𝑆. − 𝐷�.�[2(𝑆 − 𝐷�cos𝜓h)]21, (7-1) 

while, the position of the target is expressed as,	𝒓 = 𝐷h[sin𝜃 cos𝜙 sin𝜃 sin𝜙 cos𝜃]@. Note that the angle 
𝜓h can be expressed in terms of the angle 𝜃 and 𝜙, the TX-RX distance 𝐷� , and the position of the TX 𝐭 =
[𝑡1, 𝑡., 𝑡q]@as: 

cos𝜓h =
𝑡1sin𝜃 cos𝜙 + 𝑡.sin𝜃 sin𝜙 + 𝑡qcos𝜃

𝐷�w(sin𝜃 cos𝜙). + (sin𝜃 sin𝜙). + (cos𝜃).
 (7-2) 

 

Figure 7-9: Bistatic radar range sensing and positioning in the RX LCS using an estimate of the angle 𝝍𝒓 which 
is connected with the zenith and azimuth AoA 𝜽 and 𝝓. 
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In Figure 7-9, the angles 𝜃 and 𝜙, and consequently the angle 𝜓h, need to be estimated using the appropriate 
procedure. Note that, the previous derivations are based on the use of the LCS of the RX. However, the efficient 
representation of bistatic radar sensing involves the use of the LCSs of all nodes and of the system Global 
Coordinate System (GCS).  

Figure 7-10 presents the maximum target-to-RX distance, 𝐷h, that can be sensed for a pair of angles of (𝜃, 𝜙), 
when the CP duration is the one adopted by New Radio (NR) for a normal CP duration for the numerologies 
with 𝜇 = {0, 1, 2,3}, defined in the 3GPP technical report 38.211, i.e., CP duration of 4.69, 2.34, 1.17, and 0.57 
𝜇s which correspond to a numerology of 𝜇, 0, 1, 2, and 3, respectively. Note that, as shown above, the distance 
𝐷h depends on the pair (𝜃, 𝜙) through the angle 𝜓h. Also, this figure provides results for a pair of angles, 
𝜃, 𝜙 ∈ [0, 85], as the rest of the angles are either not of interest (correspond to back lobe angles or to the LoS 
path where the performance of bistatic sensing is poor) or the corresponding maximum distance is readily 
available due to the symmetry of the maximum sensed ellipsoid. The observation of Figure 7-10 shows that, 
as expected, longer durations of CPs provide longer maximum sensed distances 𝐷h. In addition, irrespective 
of the CP length, the maximum distance that can be sensed corresponds to 𝜃 and 𝜙 equal to 85 degrees. This 
is because this direction points towards the outer ellipsoid that can be sensed for a given CP duration. 

 
(a) 𝑇iU = 4.69	𝜇𝑠 

 
(b) 𝑇iU = 2.34	𝜇𝑠 

 
(c) 𝑇iU = 1.17	𝜇𝑠 

 
(d) 𝑇iU = 0.57	𝜇𝑠 

Figure 7-10: Maximum permittable sensed Target-to-RX distance 𝑫𝒓	. 
For a CP duration, 𝑻𝐂𝐏, 4.69, 2.34, 1,17, and 0.57 μs, when the receiving and the transmitting nodes are placed in 

the [𝟏𝟎𝟎, 𝟎, 𝟎]𝑻 and [𝟎, 𝟎, 𝟎]𝑻 positions in the LCS of the receiving node (measured in m). 

7.2.2 Resource allocation for 6DoF tracking in RIS-aided JCAS scenarios 
Problem Statement: This work considers a RIS-aided multiple-input-multiple-output (MIMO) system 
operating in FR2 where a UE (e.g., a VR headset or a multi-antenna UAV is communicating with a BS. In 
order to achieve certain communication KPIs at the UE side, beamforming at the BS, RIS, and UE needs to be 
optimized, which requires the 6DoF state (i.e., 3D position and 3D orientation) of the UE. For 6D localization, 
this work assumes that the LoS path and RIS path are available to UE. In addition, the BS is the localization 
coordinator that allocates resources and configures system parameters (e.g., beamformer and RIS profile) for 
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localization. After localization and tracking algorithms are performed at the UE, the results are sent to the BS 
for future transmissions. More specifically, the BS sends localization pilot signals to the UE at each time slot 
using DFT beams (without prior information) or optimized beams (with prior information). The 6DoF state of 
the UE can be estimated at each time slot, and tracking algorithms can be implemented. Based on the predicted 
states, BS/RIS/UE beams can further be optimized for better communication and localization performance. 
This work has the following assumptions: the LoS path and RIS path are available to UE; the channel state 
information (CSI) is available; and the pilot signals are known to UE for 6DoF state estimation. 

Methodology: In this work, it is assumed that the state (3D position and 3D orientation) of UE 𝐏8,�, 𝐑8,� and 
the prior information (covariance matrix of the state 𝚺8,�) from 𝑡 = 1 to 𝑡 = 𝑇 − 1 can be estimated via certain 
localization algorithms. Based on the developed 6DoF tracking algorithm, the UE state P8,@ , R8,@  and the 
updated covariance matrix 𝚺8,@ 	at 𝑡 = 𝑇 can be estimated. Based on the predicted state and covariance matrix, 
the BS/UE/RIS beamformers (𝑊·,@, 𝑊8,@, 𝑊E,@) are optimized for better communication performance for the 
next step at 𝑡 = 𝑇 + 1. The block diagram of the 6DoF tracking can be found in Figure 7-11. More details 
about the signal model can be found in [WS22a] and [WS22b] and the geometry model can be found in 
[ZCB+23]. The beam optimization for localization is also considered. Different from communication where a 
single beam codeword is sufficient, localization requires a beamforming matrix containing the beamformers 
at G transmissions (e.g., 𝑾·,@ = [𝒘¸,@,1, … ,𝒘·,@,¹]). Note that if multiple BSs (𝐿· > 1) are adopted instead 
of an RIS-aided system, power allocation at the BSs (𝑃1, 	𝑃., 	 … , 	𝑃®I) is also needed. In this JCAS system, 
channel capacity is used to gauge the communication performance, and the position/orientation error bound is 
used to gauge the localization performance. 

 
Figure 7-11: Block diagram of the 6DoF tracking. 

Results: In Figure 7-12, the RMSE of the estimated orientation with a known UE position is evaluated. The 
BSs are located at [0, 0, 0] and [0, 5, 0], while the UE is located at [5, 3, 0]. Each BS can provide an angle pair 
(azimuth and elevation) estimation. Next, 1000 angle estimation samples were randomly generated with  
covariance matrices of diag ([0.88, 1.50]) and diag ([0.05, 0.65]). The RMSEs are in the form of Euler angles, 
rotation matrix, and the matrix error in the tangent space are compared with the derived CRB, constrained 
CRB (CCRB), and intrinsic CRB (ICRB). It can be seen that for certain UE orientations, the estimated Euler 
angles have large errors.  

This is due to the non-unique mapping from the rotation matrix to Euler angles. The estimated rotation matrix 
at high SNR matches CCRB well. However, the CCRB cannot be directly used in the filter due to the low rank 
of the matrix. Alternatively, ICRB that can reflect the intrinsic error of the rotation matrix is used in the 6DoF 
filter design. 
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(a) UE orientation [0, 0, 0]    (b) UE orientation [180, 0, 0] 

Figure 7-12: Comparison between different orientation errors (Euler angles errors, rotation matrix errors, and 
rotation matrix errors in the tangent space) and corresponding bounds (CRB, CCRB, ICRB). 

In Figure 7-13, the direction vectors of the UE-BS link are visualised, e.g., the BS seen at the UE’s local 
coordinate system. The BS is located at [5 0 0], and the UE is located at [0 0 0]. The orientation of the UE in 
terms of the Euler angle is [-20, 30, 0]. Due to the uncertainty of UE state estimation, beamforming at the UE 
is crucial for a stable link. By setting the covariance matrix of the UE position as diag ([0.02, 0.02, 0.2]), and 
UE orientation tangent space error as diag ([0.2, 0.01, 0.01]), 1000 realizations are visualized for three 
scenarios: (a) only position uncertainty is considered with a known UE orientation; (b) only orientation 
uncertainty is considered with a known UE position; (c) both position and orientation uncertainties are 
considered. The visualization indicates that different uncertainty levels require different beamforming 
strategies. 

 
Figure 7-13: Visualization of the BS direction at the UE’s local coordinate system under different uncertainties. 

7.2.3 Resource allocation and protocols for inter-UE sensing 
Problem Statement: Bistatic sensing refers to the sensing mode where one node transmits a sensing signal 
that is received by another node. While it is simple to utilize such a signal in theory, it is quite complex due to 
various practical constraints. Various signal processing techniques have been developed, often in the field of 
“passive radar” [LKR21] to utilize such signals in an optimal way. Key problems are linked to missing, or 
weak time and frequency synchronization, clock drift, phase noise to name a few key challenges. 
Consequently, research was focusing on setups that leverage specific properties of the environment or of the 
participating nodes. For example, scenarios were limited to air surveillance with few targets, or multistatic 
sensing was realized using multiple well-synchronized transmitters. In this work, the intention is to develop 
the foundation for bistatic sensing between UEs. Due to their mobility and limited synchronization, such a 
setup can be considered the most challenging one. Multiple tasks need to be handled to allow useful sensing 
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signal exchanges between the UEs. The goal is to leverage the 6G standard to enable such functionalities by 
deeply integrating required protocols and procedures into the standard to solve problems such as coordination 
and orchestration of air interface resources, and the sensing task itself. Air interface resource allocations could 
be defined in time, frequency, space, code and polarization domain. Suitable device to device sensing may be 
performed in licensed or unlicensed band under the regulations and rules in the specific band. The choice may 
depend on the frequency. Here, the focus is on bands around 60 GHz and Sub-THz frequencies. Each device 
is assumed to be connected via cellular technology to a central controller (CC) for sensing administration and 
orchestration. In order to allow the two devices to hear each other, a minimum set of resource parameters have 
to be met. The corresponding PHY-layer procedures are assumed to be available for this purpose. These 
sensing procedures define the waveforms, synchronization aspects in time and frequency and the “message 
content” of the sensing signal itself. In case of directional transmission, a notion of relative orientation is 
required. This could be achieved by pointing the transmitter and receiver at the sensed object. For directional 
channels it is further assumed that the line-of-sight components between transmitter, sensed object and receiver 
are dominant.  Exchange of information, capabilities and control can be handled via CC. In the following, an 
OFDM based waveform is assumed to be transmitted for sensing purpose.  

Methodology: Given inter-UE sensing between at least two devices, where the presence of another device in 
the vicinity must be detected. This discovery could be done via low non-3GPP technologies like Bluetooth or 
ultrawideband (UWB). Once a suitable device is found, relative orientation of the two devices must be 
established. To receive a sensing signal proper synchronization is required. Synchronization in time and 
frequency could be achieved via 3GPP or IEEE based technology. Here 3GPP technology is assumed. Initial 
timing synchronization is assumed to be down to a fraction of the CP of the OFDM symbol as this is required 
for transmission and reception in communication. In addition, a minimum synchronization accuracy of the 
carrier frequency has to be met, e.g., 0.1 ppm.  

 

 
Figure 7-14: Block Diagram for Bistatic Sensing at UE. 

Results: An exemplary solution for inter-UE sensing is shown in Figure 7-15. Leveraging today’s 5G 
positioning protocol, a first solution for inter-UE sensing is provided. It is agnostic to frequency bands and 
utilizes licensed band for coordination and sensing. This can be considered an ideal solution from resource 
allocation point of view since additional delay due to required listen-before-talk in unlicensed band is avoided. 
Listen-before-talk could potentially result in multiple iterations of coordination until the unlicensed channel is 
available for sensing. The coordination task is mostly realized by a network function (SeMF) and may be 
assisted by the serving Transmission Point(s) (TRP). Sensing operation may be requested either by a network 
entity or by one of the participating UEs. While reporting of results is likely required in the first case, it may 
be obsolete in the latter, therefore this step needs to be optional. To avoid interference, the SeMF needs to 
assign resources such that the assigned sensing signals are orthogonal to any other signal that is transmitted in 
the vicinity of the participating UEs. Such orthogonality may be realized in any domain. Such scheme can be 
straightforwardly adapted to other modes such as monostatic UE, monostatic TRP, as well as bistatic and 
multistatic sensing between UE-TRP. 
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Figure 7-15: Protocol for Bistatic Sensing between UEs. 
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8 Flexible spectrum access solutions 
This chapter covers spectrum access related topics including spectrum sharing with non-terrestrial networks 
(NTN) and 5G as well as approaches for low latency spectrum access: Section 8.1 discusses spectrum sharing 
and required coexistence mechanisms with NTN as well as multi-radio access technology (RAT) spectrum 
sharing (MRSS) with 5G. Related representative use cases (UC) from [HEX223-D12] include ubiquitous 
networks and network-assisted mobility due to high service coverage requirements that can be achieved by 
NTN to augment terrestrial network (TN) coverage. Section 8.2 covers low-latency spectrum access solutions 
for higher frequency ranges as well as risk-aware access protocols. Low-latency access is important for UC 
with stringent latency and reliability requirements like real-time digital twins or cooperating mobile robots. 
Two related aspects are further detailed in this chapter: Section 8.3 addresses handover (HO) challenges and 
associated overheads within NTN. Section 8.4 proposes a method to predict interference levels to assist radio 
resource management. 

8.1 Spectrum sharing and coexistence 
Spectrum is a valuable and scarce resource. The success of 6G will rely on the existence of new spectrum to 
satisfy the requirements of the new use cases, and, therefore, the ability to leverage spectrum that is already 
allocated to existing services is essential. It is necessary that coexistence mechanisms are in place for efficient 
spectrum sharing, which is the focus of this chapter. Therefore, the emerging non-terrestrial connectivity 
leading to new interference scenarios is investigated. First, improvements on the assumptions and models in 
sharing studies are proposed for the case of co-channel coexistence of international mobile telecommunications 
(IMT) and fixed satellite service (FSS) ground stations. Next, spectrum sharing possibilities between 6G and 
FSS uplink (UL) in the centimetric range are shown, giving hints on how to improve antenna design to make 
the coexistence possible. This is followed by a study on TN-NTN spectrum sharing in S-band (2 GHz) using 
stochastic geometry, which gives insights on how to optimize the integrated network performance in complex 
systems. The chapter ends with a section on MRSS between 5G new radio (NR) and 6G, focusing on TN, 
which will allow a smooth spectrum migration between the two generations.  

8.1.1 Assumptions and models to determine sharing possibilities with fixed-
satellite service Earth stations 

Problem statement, scope: The assumptions and models of spectrum sharing and related compatibility studies 
are crucial in understanding how mobile networks coexist with other radio services. The focus of this section 
is to determine how additional assumptions on antenna models and deployment related parameters can improve 
conditions to prevent interference between radio services, e.g., shorter separation distances between terrestrial 
stations operating in the same frequency band. This aims to enhance efficiency and compatibility in wireless 
communication systems. 

Methodology, deployment considerations: This assessment evaluates co-channel separation distance to 
prevent interference from a mobile network base station (BS) using active antenna systems (AAS) to FSS earth 
stations (ES). It compares factors, including refined assumptions on radiation patterns and user equipment 
(UE) deployments, using Monte Carlo simulations to determine separation distances. Focus is on C-Band (3.4-
4.2 GHz), as both 5G and FSS heavily utilize this frequency band. The relevant system parameters for 
deployments in Fuchsstadt [Int23] and DLR (Deutsches Zentrum für Luft- und Raumfahrt; German Aerospace 
Centre) [DLR23] for both mobile networks BS with AAS and FSS ES are detailed in Appendix Section A.5.1. 

Results: For different ground distances between the BS and FSS ES, the following results correspond to the 
case when the BS is always facing the FSS ES around it (worst-case). Additionally, it is assumed that the BS 
is active either 100% or 50% of the time, accounting for varying network loading factors, and that the time 
division duplexing (TDD) ratio for downlink (DL) is 75%. Table 8-1 summarizes the separation distances 
considering clutter losses only on one end of the propagation path, FSS antenna model S.465 [ITU-S.465], and 
a uniform UE distribution. These distances are detailed for the instances where the BS is facing the main-lobe 
and the back-lobe of the FSS ES. 
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Table 8-1: Separation distances for a FSS with S.465 antenna model and a UE uniform distribution 

BS Size FSS ES FSS ES 
Pattern 

Activity factor Main-lobe (km) Back-lobe (km) 

8×8 AAS DLR S.465 100% < 10.8 < 2.8 
8×8 AAS DLR S.465 50% < 5.6 < 1.4 
8×8 AAS  Fuchsstadt S.465 100% < 19.6 < 2.8 
8×8 AAS  Fuchsstadt S.465 50% < 12.8 < 1.4 
4×4 AAS DLR S.465 100% < 15.8 < 4.6 
4×4 AAS DLR S.465 50% < 14.6 < 3.8 
4×4 AAS Fuchsstadt S.465 100% < 23 < 4.6 
4×4 AAS Fuchsstadt S.465 50% < 21.4 < 3.8 

For instance, interference-to-noise (I/N) values for a 20% probability around the DLR ES with a 37.5% activity 
factor are shown for an 8x8 BS in Figure 8-1. The darkened area indicates locations where the I/N protection 
criterion is exceeded. 

 
Figure 8-1: (a) I/N around DLR earth station and (b) I/N CDF at 5.6 km from FSS ES (facing main-lobe). 

Table 8-2 summarizes the separation distances considering clutter losses only on one end of the propagation 
path, FSS antenna model based on Bessel functions, and a UE Rayleigh distribution. These distances are 
detailed for the instances where the BS is facing the main-lobe and the back-lobe of the FSS ES. 

Table 8-2: Separation distances for a FSS with Bessel antenna model and a UE Rayleigh distribution. 

BS Size FSS ES FSS ES 
Pattern 

Activity factor Main-lobe (km) Back-lobe (km) 

8×8 AAS DLR Bessel 100% < 2 < 0.6 
8×8 AAS DLR Bessel 50% < 1 < 0.4 
8×8 AAS  Fuchsstadt Bessel 100% < 2 < 0.6 
8×8 AAS  Fuchsstadt Bessel 50% < 0.8 < 0.4 
4×4 AAS DLR Bessel 100% < 7.2 < 1.2 
4×4 AAS DLR Bessel 50% < 4.8 < 0.8 
4×4 AAS Fuchsstadt Bessel 100% < 7.4 < 1.2 
4×4 AAS Fuchsstadt Bessel 50% < 4.8 < 0.8 

For instance, in Figure 8-2, I/N values for a 20% probability around the DLR ES with a 37.5% activity factor 
are shown for an 8x8 BS, FSS ES radiation pattern based on Bessel functions, and UE Rayleigh distribution. 

(a) (b)
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Figure 8-2: (a) I/N around DLR earth station and (b) I/N CDF at 1 km from FSS ES (facing main-lobe). 

In conclusion, additional assumptions including more accurate FSS ES radiation patterns, UE deployments, 
and the BS activity factor are considered to determine their impact on the required separation distances to 
prevent harmful interference: 

• Bessel functions provide a mathematical description of the electromagnetic fields within parabolic 
reflectors, enabling accurate predictions of radiation patterns. 

• A Rayleigh distribution for the UE ground distance from its BS is deemed more appropriate for 
scenarios like local networks provided that these networks are deployed where users are expected to 
remain in the local cell rather than moving between different cells as in public mobile networks. 

• It is reasonable to assume that a BS is active either 100% or 50% of the time, accounting for varying 
network loading factors. Considering a TDD activity factor of 75% for DL (3:1), the equivalent activity 
factors become 75% and 37.5% respectively. 

This analysis shows that taking into account the mentioned factors lead to a reduction in distances from tens 
of kilometres to just few kilometres in some cases. This highlights that utilizing more accurate models and 
assumptions, when available, can provide results that can be closer to reality. Additionally, note that for larger 
AAS antenna arrays, the separation distances decrease due to the enhanced directivity of such larger arrays. 

8.1.2 TN-NTN spectrum coexistence and sharing frameworks 
Coexistence of TN and NTN is foreseen as an important component to fulfil the global coverage promised for 
6G. Due to ever rising spectrum demand, certain frequency bands allocated by radio regulations to NTN and 
satellite networks may overlap with those already utilized by cellular TN, leading to performance degradation 
due to the potential co-channel interference. In this section two studies on this issue are presented. 

8.1.2.1 Spectrum sharing between 6G and FSS UL in the centimetric range 

Problem statement, scope: Additional spectrum from the centimetric range (7-15 GHz) is identified as 
essential for realizing the high demanding use cases envisioned in future 6G networks [STK+23]. In the 
following the coexistence and sharing possibilities in this frequency range focusing on spectrum sharing 
between 6G IMT and satellite networks, namely FSS UL, are investigated. 

In case of coexistence with satellites the goal is to protect the feeder UL or the service UL. In the following 
the latter is considered. The interfering terrestrial node can be either the BS (transmitting in DL) or the UE 
(transmitting in UL). For this study, the impact from the UE is disregarded, since the transmit power is lower. 
Figure 8-3 includes a sketch of the described scenario. In this situation, the level of interference will depend, 
among others, on the transmit power of the interferer, directivity of the antennas, the spectrum arrangement 
between the networks, and the density of interfering nodes. In fact, since in this case a) the propagation between 
the interfering terrestrial node and the victim satellite node is mostly in the “vertical” direction, b) a single 
satellite beam can have a large footprint and c) the orientation of the interferer antennas has a smaller impact 

(a) (b)
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(most of the interference is transmitted via the sidelobes and back lobes), there can potentially be a large 
number of meaningful interferers that should be taken into account when calculating the level of the total 
interference. Furthermore, the distance between the victim satellite receiver and the interfering terrestrial 
transmitter (i.e., the altitude of the satellite orbit and the elevation angle) has only a minor impact, partially 
due to the “vertical” (line-of-sight) propagation, but mostly due to the relationship between the path loss and 
the size of the footprint affecting the number of interfering nodes (as the altitude increases, the path loss 
increases quadratically with distance, but at the same time the size of the footprint is equally increased). Hence, 
for this scenario, the problem is not so much the impact of a few strong interferers, but the potentially high 
level of the average interference. In practice, what will matter is how much power per area unit (km2) is used 
on earth (i.e., the output power of the base stations and the site density within the satellite beam coverage area), 
how much the antennas can attenuate the transmitted power towards the satellite and what frequency is being 
used. 

 
Figure 8-3: Schematic overview of the coexistence scenario, where the victim is the satellite. 

 Several IMT base stations serve UEs in the footprint of the satellite (in blue). The green lines represent the 
communication between the BS and UE, and the red solid lines represent the interference that those induce in 

the satellite. 

Methodology, deployment considerations: To study the impact of a mobile system on the FSS UL in the 
centimetric range, the following frequency ranges are of interest: 12.75-13.25 GHz (UL for SpaceX Starlink 
Gen 2 and OneWeb Phase 1) and 14-14.5 GHz (UL for SpaceX Starlink and OneWeb Phases 1 and 2). After 
the recent outcome of WRC23, these frequency bands are not of immediate interest for 6G, but the conclusions 
remain valid and useful for an eventual further future IMT identification. 

The simulation methodology used can be described in the following steps: 

1. An IMT network is created with a set of BSs in a hexagonal grid. UEs are distributed uniformly in the 
cell. At a given instant, each BS serves three random UEs simultaneously. 

2. Multiple IMT networks are distributed randomly in the satellite footprint on the earth surface. The 
total number of BS is calculated based on the Ra/Rb method [ITU-5D716] for large area aggregation 
and the deployment density for the specific scenario. 

3. The average antenna gain from all BS to the satellite is calculated for different elevation angles. 
4. An estimate of the cumulative interference to a satellite is calculated. 

Table A.5-26 includes the IMT assumptions, which are aligned with ITU-R WP 5D [ITU-RA4.17, ITU-
RTG5]. In contrast to the previous Section 8.1.1, in which new assumptions are used to improve future 
coexistence studies, this section uses the current recommendations. However, since there are currently no ITU 
recommendations for antenna characteristics in the frequency ranges in focus, two different sets of parameters 
have been used in the sharing studies, belonging to the closest frequency ranges: 6425-10500 MHz [ITU-
RA4.17] and 24.25-33.4 GHz [ITU-RTG5]. 
The resulting antenna gains are included in Figure 8-4 a). On the satellite side, assumptions for the two 
constellations present at the studied frequency ranges are included in Table A.5-27. However, given that the 
main difference between Starlink and One Web in this set-up is the orbit height, the results have been produced 
only for the worst-case-scenario, which corresponds to the closest-lying constellation, Starlink. 

Results: Figure 8-4 shows the main results. The I/N ratio in Figure 8-4 b) follows the trend of the antenna 
pattern, being lower where the BS transmit powers are lower and vice versa. It is important to note that angles 



Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 128 / 218 

 

below 20-25 degrees are not interesting because they are not used by the satellite system. It can be seen that 
coexistence is not possible using the ITU recommendations for the 6450-10500 MHz frequency bands, unless 
the BS power spectral density is reduced below 6 W/200 MHz. However, delivering a service capable of 
satisfying the requirements of the future 6G network will be challenging at these low output powers in an urban 
macro network. On the other side, Figure 8-4 b) shows that coexistence is indeed possible using the 
recommendations for the 24.25-33.4 GHz frequency bands. This is very clear at the very low power included 
in the recommendation (10 dBm/element, which corresponds to ca. 1 W/200 MHz in an 8x8 antenna setup), 
whereas Figure 8-4 c) shows that the power in this configuration can indeed be increased to ca. 22 W/200 
MHz, most likely because the BS are more shielded behind buildings when the BS are placed at a lower height. 

 
Figure 8-4: a) Antenna gain vs elevation angle generated for 13 GHz for the two sets of assumptions, b) I/N for 

both sets of assumptions and frequencies, c) I/N for different BS power at 35 degrees of elevation angle.  
The blue (8x16) and yellow (8x8) lines correspond to the ITU recommendations for 6450-10500 MHz and 24.25-
33.4 GHz, respectively. The green horizontal line is the typical level for an acceptable I/N in coexistence studies..  

If the studied frequencies are to be used in a typical urban macro deployment, sharing solutions need to address 
the high interference levels shown for the upper set of data in Figure 8-4, especially if higher output powers 
are to be used as expected in 6G. Different approaches can be explored: use of databases, improvement of the 
IMT antenna to reduce emissions towards the sky via mechanisms that control side lobes, and increase of the 
victim resilience making sure that satellite antennas can be made to tolerate more interference. 

8.1.2.2 TN-NTN Spectrum Sharing in S-Band using stochastic geometry 

Problem statement: Simulation-based studies on different co-existence scenarios may fail to offer a 
comprehensive and insightful understanding of these networks’ overall performance, in particular because the 
complexity of a brute force performance evaluation increases exponentially with the number of nodes and their 
possible combinations in the network.  

Methodology, deployment considerations: Stochastic geometry is utilized to analytically derive the 
performance of TN-NTN integrated networks in terms of the probability of coverage and average achievable 
data rate for two co-existence scenarios. From the numerical results, it can be observed that, depending on the 
network parameters, TN and NTN users’ distributions, and traffic load, one co-existence case may outperform 
the other, resulting in optimal performance of the integrated network. The analytical results presented herein 
pave the way for designing state-of-the-art methods for spectrum sharing between TN and NTN and optimizing 
the integrated network performance. 

The coexistence scenario is depicted in Figure 8-5. An NTN and a TN share the same spectrum, and the NTN 
is used to provide services to the UEs located outside the TN coverage area. The NTN generates interference 
on the TN UEs, arising both from the earth-to-satellite and satellite-to-earth links.  
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Figure 8-5: Coexistence Model. 

The satellites are located at a height a. All UEs and TN base stations are randomly located inside the coverage 
area. An isolation distance 𝑑�Cºbetween the edge of the TN coverage area and the NTN UEs may be ensured 
to minimize the interference on the TN UEs located at the cell edge.  

Results: In Figure 8-6 the distribution of the signal-to-interference-plus-noise ratio (SINR) caused by the NTN 
in the space-to-earth link is shown, and a performance penalty on the TN can be observed, which increases 
with lower-orbit satellites. It can also be seen that simulation and theoretical results are very close, indicating 
the correctness of the analysis. Results when the NTN UEs generate the interference are shown in Figure 8-7, 
where it can be seen that UEs close to the border can suffer a lot from interference if the isolation distance is 
not large enough. 

 
Figure 8-6: SINR distribution at the TN for different satellite altitudes – space-to-earth link as aggressor. 

 
Figure 8-7: Effect of isolation distance on different users – earth-to-space link as aggressor. 
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8.1.3 Multi-RAT Spectrum Sharing 
Problem statement, scope: MRSS will allow 5G-NR and 6G to share a single frequency band, especially in 
frequency range (FR) 1. This will enable network operators to smoothly migrate their networks from 5G to 6G 
as the traffic demands for the latter increase. At the beginning of 6G deployment, however, the penetration of 
6G UEs is likely to be low, evolving over time. A static refarming of 5G frequency bands is not efficient and 
flexible enough to accommodate the different traffic profiles and the rapidly evolving 6G adaptation. 
Therefore, a framework that allows an incremental and dynamic allocation of resources to the 6G network is 
required. An initial blueprint for this approach was already provided with dynamic spectrum sharing (DSS), 
which enabled the transition from 4G to 5G, and one can learn from the experience with that framework, albeit 
with improved efficiency and flexibility. The MRSS solution will have to dynamically allocate radio resources 
in time, frequency and space, depending on the traffic demands from both 5G and 6G networks. As it can be 
seen in Figure 8-8 it is expected that 6G will provide a better spectral efficiency and capacity than NR. As the 
penetration of 6G UEs increases over time, the overall system efficiency should also increase, eventually 
reaching the full 6G potential when it is universally adopted. A certain overhead loss is to be expected when 
two different RATs share the same spectrum, which may decrease the efficiency slightly at the beginning of 
6G operation, when only few terminals will be 6G-capable.        

 

 

 

a) G/radual Deployment of 6G. b) MRSS Architecture and 3D-Sharing. 

Figure 8-8: 6G Deployment. 

Requirements and recommendations: In the development of MRSS some technical requirements should be 
observed as follows 

• The solution must be transparent to legacy 5G UEs, which must not require any changes. 
• The overhead associated with a hybrid NR/6G network must be minimized. 
• Capabilities of 5G legacy devices and by day-1 6G features must be supported, including carrier 

aggregation configurations (DL and UL) on 6G UEs. 
• Grant network operators the capability to alter their prioritized air interface as needed over time. 

Further recommendations can be provided deriving from previous experience with DSS. 

• 6G physical layer (PHY) should be compatible with NR waveforms and numerologies, avoiding 
additional guards and facilitating spectrally efficient sharing. 

• Physical layer overhead must be kept as low as possible. Due to the lean and future-proof design of 
NR, the potential for overhead reduction in MRSS is high when compared with DSS. 

• MRSS deployments should not prevent the utilization of energy saving gains introduced by 5G-
Advanced. The framework should also be flexible enough to accommodate new 6G-specific energy-
saving features. 

• The Xn interface would fall short of expectations. The standardization of new interfaces between 
schedulers comes with realization and implementation challenges.  
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• Avoid 4G-6G MRSS due to fixed 4G long-term evolution (LTE) overheads. Sharing with LTE-M and 
narrowband Internet of things (NB-IoT) can be handled in a less optimized / more static way, when 
needed. 

RAN Architecture and Sharing: Although MRSS deployments are expected to share a common radio unit 
(RU), the baseband unit could be shared or be independent for both RATs, as depicted in Figure 8-8. The 
former would facilitate coordination across packet schedulers, but the latter case would, for example, entail a 
high-speed low-latency interface. For DSS, no such interface was standardised and the existing network 
interface (Xn) would fall short of expectations given the additional delay introduced by the higher layers and 
the potential routing delays, but this new interface may be challenging to realize and implement. Avoiding 
new interfaces is preferable, given the associated standardization, implementation, testing, and integration 
costs. In Figure 8-8b it is also shown that MRSS is a form of spectrum sharing in time, frequency and space 
(beams) between two different RATs. 

Methodology, system model and simulations: A system-level simulation framework allowing a joint 
investigation of NR and 6G is under development. The studies will be confined to the air interface performance 
of MRSS, with layers from PHY to radio link control (RLC) being modelled. Higher-layer and architectural 
issues will not be directly considered in this study, particularly at core network level. Different radio access 
network (RAN) architecture setups can however be modelled considering for instance different latencies for 
the communication between NR and 6G networks, as described in the previous subsection. 

The system will consist of a regular hexagonal grid of 3-sector gNodeBs, both with and without beamforming. 
NR and 6G networks will share the same radio front-ends (RUs). The simulations will allow us to obtain an 
estimate of MRSS efficiency, in which a comparative analysis in the following domains will be performed: 

• Different scheduler configurations, from a joint NR/6G scheduler to independent schedulers with 
minimum communication. 

• Different RAN architectures 
• Different adaptation timeframes, from long-term traffic trends to real-time (slot-level) adaptation. 
• Efficiency of solutions in time, frequency, and spatial domain. 

8.2 Low-latency spectrum access 
Many services require low-latency access to spectrum for a good and reliable user experience. Low-latency 
access in this context covers initial access (sharing of basic access parameters and first-time access) as well as 
shared access for UL and DL resources with associated resource sharing and conflict handling. Especially for 
sub-THz communications highly directed beams are required to mitigate pathloss, which complicates beam 
search, alignment, and tracking procedures. Combined with standard listen-before-talk (LBT) requirements it 
is thus challenging to achieve a low access latency. In the following a further look on sub-THz spectrum access 
methods will be given. Options to achieve low latency will be presented and related simulation assumptions 
and evaluation methods will be discussed. The proposed access techniques are not limited to sub-THz 
frequency ranges; they could also be applied to lower frequency ranges like FR 2. 

An additional technology that is covered in this section is a probabilistic approach to access spectrum. Risk-
informed random access for local communication considers risks by creating extra interference for other users. 
It can be seen as a new paradigm that borrows ideas from random access concurrently with scheduled access. 

8.2.1 Sub-THz access methods 
Problem statement, scope: The different parts of spectrum access are described and tailored to sub-THz 
frequency range, covering initial search, initial access, idle, and connected mode access. At first, a general 
overview on basic ingredients of the access scheme is given, followed by an example implementation and 
simulation. 
Methodology, deployment considerations: A two-step spectrum access including an omni-directional 
anchor RAT (e.g., FR 1) and a directed low-latency high-data-rate sub-THz booster RAT is assumed.  
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Figure 8-9: Overview of the two-step access and directional/omni-directional access. 

In a first step, registration and initial access control are done via the omni-directional RAT to relieve the sub-
THz access point (AP) from registration and sharing of basic connection parameters. Based on this registration 
the AP configures the associated directed sub-THz access for both UE and AP.  

In a second step the UE, knowing the sub-THz AP timing and parameters, handles the additional sub-THz 
related procedures including synchronization, beam finding, and data transfer. See also the following list and 
Figure 8-10 for additional details on the repeated set of procedures. 

 
Figure 8-10: Sub-THz access scheme. 

• AP detection and beam finding: The AP sends a set of beacon beams in a pre-defined pattern that are 
measured by the UE to find the current best AP Tx beam. 

• UE detection and beam finding: After selecting the AP Tx beam the roles are changed and the UE 
sends a set of beacon beams towards the sub-THz AP with a pre-configured timing. The AP measures 
the beams and detects the best UE Tx beam. 

• AP response slots: The AP sends a response at a pre-defined time to tell the UE that it is allowed to 
use the subsequent data period. Further assignment of slots and UL/DL resources will be done 
dynamically during that data period. 

• Data period: The previously selected beam pair is used. The assignment of slots within the data period 
to a certain UE is done via a physical DL control channel (PDCCH) sent by the AP. 

In shared unlicensed spectrum, fair access between several UE (not registered to the same AP) for this scheme 
can be ensured via a limited channel occupancy time combined with a minimum Tx and Rx directivity. This 
approach avoids time consuming LBT procedures and keeps interference low. 

Results: Pre-configuration of the directed access avoids conflicts between multiple registered UE and allows 
a tailoring of the sub-THz access point parameters to the targeted access latency. For a bandwidth of 10 GHz 
and a set of optimized parameters a data latency in the range of 100–150 µs can be achieved. While the latency 
within the data period could be further reduced, the limiting factor for the worst-case latency is the repetition 
and duration of the detection and response period. A frequency-domain decoupling of beam search and 
refinement from the data period can further reduce latencies, see Figure 8-11. 
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Figure 8-11: A) same frequency range, B) decoupled frequency range for beam search and data period. 

The beam search and response part of the access scheme are put into a dedicated bandwidth part with a 
bandwidth of, e.g., 100–500 MHz. This bandwidth still allows very short beam durations, reasonable feedback 
message sizes, and an acceptable control overhead compared to the overall used bandwidth. This approach 
decouples beam pairing from data period handling and reduces latency. The beam search and alignment can 
be tailored to the UE velocity and environment while the data period can be tailored to achieve required latency 
and throughput. Assuming a similar structure of the data period (like in the previous time-multiplexed scheme) 
into data slots combined with PDCCH and reception acknowledgement feedback, a latency of down to 20 µs 
can be reached. The control overhead is increased to around 10–20 % (PDCCH and reserved bandwidth part 
for the beam alignment). Due to the large available bandwidth this trade-off is deemed acceptable.  

An overview on the general simulation setup with a few used assumptions can be found in Section A.5.4. 

8.2.2 Risk-informed random access 
Problem statement, scope: Non-coordinated risk-informed random access to localized communication can 
augment scheduled access, if the risk for interference is expected to be low. Interference assessment is central 
as it helps in understanding potential risks and their occurrences during sharing. 

Methodology, system model: In this study interference assessment for Aloha and carrier-sense multiple 
access (CSMA) based device-to-device communication for a shared frequency band is performed in a 
simulation environment. The key objective of this simulation is to understand the dynamic spectrum access 
with the consideration of risk-based interference management. A ray tracing simulation tool ‘Wireless InSite’ 
is used which is mainly dedicated for measuring the propagation loss paths of the signals between the base 
station and the devices and for modelling the channel access python is used. Signal strengths details are vital 
in modelling the behaviour of the UEs in the channel simulation of the Aloha and CSMA and allows to measure 
the interference for UEs at various timestamps. For the antenna modelling of the UEs and base stations, the 
built-in characteristics of the simulation tool are used, for example, a directive antenna model for the base 
stations and the omnidirectional antennas for UEs are used.  

This simulation study comprised of six steps. The starting step defines the details about various involved 
devices and their properties in the Wireless InSite tool such as UEs, base stations and device implementation. 
The second step calculates the path loss between the UEs and the base station. Step three determines the 
potential destinations for UEs and measures the SINR. The modelling for communication channel for ALOHA 
and CSMA at specific timestamps is performed in step four (4a and 4b). In the final two steps of the simulation, 
interference is measured, and respective results are generated.  

Initial results: The results of this study are assessed from different perspectives. The first one is to define the 
tolerable level of interference. Thermal noise radiation is also used to define the tolerable level of interference. 
For this simulation environment, Aloha and CSMA protocols have been used and both indoor and outdoor 
scenarios (City and Harbour) are considered. Figure 8-12 presents comparison of mean aggregate interference 
and throughput against the channel load. It can be analysed that for Aloha interference and throughput do not 
depend on each other while there is an exponential increase in interference against the throughput for CSMA.  

The occurrence of potential interference risks can be defined when the particular threshold is exceeded and the 
details regarding how usual it occurs. Figure 8-13 presents the information about the time of maximum 
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interference against the channel load. It can be seen from the figure that there are different reasons for both 
Aloha and CSMA. 

 
Figure 8-12: Channel load and mean aggregate interference plotted against channel load. 

 

Figure 8-13: Proportion of observations exceeding indicated limits for aggregate interference. 
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8.3 Inclusive radio interface via TN/NTN enhancements 
Problem statement, scope: In future 6G and beyond systems, NTN is envisioned as an essential supplement 
to the cellular TN to deliver ubiquitous coverage, unrestricted by landscape and infrastructure building 
limitations. The seamless integration of NTN (including communication through satellites, drones, etc.) and 
TN will connect the entire environment (sky, sea, remote terrain, etc.) of human activity. Various research and 
development activities are ongoing to address specific NTN challenges such as latency, Doppler effects, and 
TN interoperability. In 5G era, 3GPP has been working from Rel. 17 on standards to enable NTN within the 
NR and LTE internet-of-things framework [28.841]. Rel. 18 work introduced enhancements for optimizing 
satellite access performance, addressing new frequency bands, and supporting new capabilities and services 
[RP-234011, RP-234073]. Rel. 19 targets to further improve the service experience (coverage enhancements, 
support of reduced capability UE) and add new capabilities (support of regenerative payloads, multicast and 
broadcast services) [RP-234078]. 

A very critical aspect for TN and NTN integration, and key topic for specified NTN enhancements in 3GPP 
Rel. 18, is the HO of users between cells, i.e., the process of transferring an ongoing communication session 
from one cell (or node) to another, to maintain continuous and reliable connectivity. Figure 8-14 depicts such 
example HO cases in an TN-NTN integrated system. When it comes to NTN, and especially the satellite case, 
frequent HO (as perceived in legacy TN) become unavoidable. With earth-moving and quasi earth-fixed 
scenarios, the serving cell will regularly change (intra-satellite or inter-satellite cell change) independently of 
UE mobility, implying HO of all connected UE. In addition, feeder link change would also result in HO of all 
connected UE. So, even stationary users may need to perform HO procedures in seconds timescale when 
considering the very high-speed movement of satellites. This will result in significantly increased signalling 
overheads, service interruption from such signalling latency leading to degradation of overall service 
performance, as well as energy consumption at the device side. Current work on this area considers solutions 
for enhancing NTN HO procedures. The main assumptions and HO concepts considered in 3GPP Rel. 17/18 
work for NTN are adopted, including sub-6 GHz bands, network scenarios include satellites on geostationary 
and non-geostationary orbits, transparent payload, 3GPP power class 3 UE with navigation satellite reception 
capability, earth-fixed or earth-moving cell NTN configurations.  

 
Figure 8-14: Handover in TN-NTN integrated system. 

8.3.1 Reduction of NTN handover signalling overhead 
The HO signalling overhead issue is twofold: a) during HO preparation time, network needs to send HO 
command to all UE in the cell; b) during HO execution, random access is performed by all UE in the cell. 
Regarding HO commands, one solution (also considered in 3GPP Rel. 18) is to include in those messages 
information that can be common to all UEs (in a cell or for subset groups of UEs). The question is if there is 
really benefit in terms of overhead reduction with such common signalling approach. To examine this, the 
evaluation considers a simplified model of the two possible ways of delivering the common information and 
it can be seen that there exists a trade-off when using dedicated versus common signalling (CS) and it is 
questionable whether CS is always a good solution for HO signalling overhead reduction (see Appendix A.5.6). 
For this reason, this work proposes an approach of Quality-of-Service (QoS) aware omission of HO common 
information. More specifically, based on the knowledge of the QoS or traffic pattern the network could: 
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• Keep including HO common information in the HO command message (legacy behaviour), e.g., for UE 
with on-going voice calls. 

• Omit (all or most) HO common information in the HO message, e.g., for UE with sporadic data or delay 
tolerant traffic. In that case instead, the UE will need to acquire the required parameters (e.g., from 
synchronization signal block (SSB), master or system information blocks (SIB) in current NR system) 
from the target cell. This approach incurs further HO interruption; however, this could be acceptable 
depending on the QoS or traffic pattern of the UE. A main advantage of the proposed scheme is that there 
are clear gains in terms of signalling overhead (with a compromise on HO interruption time, but only for 
UE that would tolerate it). 

• It is also possible to omit HO common information in HO command message and UE acquires some of 
the required parameters while in source cell, during source and target overlap time. This is beneficial to 
reduce interruption time in case parameters can be available (within valid duration) from source cell 
through other signalling during overlap time (see Section A.5.6). 

Regarding the second aspect of signalling, a problem identified in NTN has to do with the simultaneous mass 
random access messages during HO execution. To smooth out these HO, the network must configure different 
time periods for each UE, within the overlapping time of source and target cells. Hence, time-based conditional 
HO (CHO), a HO procedure introduced in early 5G allowing UE to decide HO when certain conditions are 
met, can be used to spread the HO messages load. However, this will involve very dense signalling within a 
usually short overlapping time while it is also possible that this time might prove not enough to perform HO 
execution for all UEs. To solve this, this work proposes a random time-based CHO approach including the 
following steps:  

a) first, network (via source cell) broadcasts the overlapping time to UE. 

b) then, the UE are configured to perform time-based CHO at a random time during the overlapping time. 

Future work plan to quantify the potential gains of the proposed approaches under common practical scenarios. 

8.3.2 Cell change without handover  
The interruption time due to HO depends, in general, to a great extent on system configuration as well as on 
processing implementations at UE and network side. In NR TN scenarios, one can expect a minimum of 25 
ms radio access latency during HO [R2-2301269], i.e., from HO command to HO complete transmission. In 
NTN scenarios, this HO latency will be inherited and may be larger, e.g., considering extra processing for 
beam management in higher frequency bands or non-regenerative payload processing at satellite. The main 
problem however in NTN scenarios is the frequency and the amount of HO, especially in low earth orbit 
scenarios involving high-speed satellite (e.g., 7.5 km/s). The time to HO in that case, even for static UE, can 
vary between 6 and 140 seconds, depending on cell size, while a large number of UE (up to twenty thousand 
per second) may need to perform HO concurrently [38.821]. A feature that could help dealing with the above 
extreme numbers in NTN cases is dual active protocol stack (DAPS), specified in 3GPP Rel. 16 of NR 
[21.916]. DAPS is essentially a HO procedure maintaining the source cell connect after reception of HO 
command and until releasing the source cell after successful random access to target cell. However, this feature 
is complex for implementation at UE (preventing wide adoption in the market so far) and can prove especially 
problematic to be supported by low capability UE, e.g., employing a single Tx/Rx chain. Instead, an alternative 
solution has been devised in Rel. 18 for NTN, considered for the case of hard satellite switch, where the main 
concept has been to perform satellite switching with physical cell indicator (PCI) unchanged. In that case, the 
expected benefit will come from the fact that the HO procedure is avoided altogether. There is no HO 
command, and the same cell appears projected to the same area by the next satellite. However, it can be 
observed that this solution comes with drawbacks (see Appendix A.5.6 for more information): a) questionable 
interruption time reduction, as target cell needs to be synchronized after leaving source cell; b) impact on other 
(legacy) UE; c) additional ephemeris and common timing advance (TA) provisioning. To solve these issues, 
this work instead proposes to adopt a “PCI change only” approach whereby: 

• there is again no HO procedure involved, 

• the cell configuration remains the same (except from parameters related to NTN (e.g., parameters 
included traditionally in SIB 19 in Rel. 17/18 NTN) 
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• only the identifier (ID) of the target cell is changed (compared to source cell ID) and needs to be 
broadcasted with existing signalling (introducing negligible additional overhead).  

With the proposed approach, the following benefits are expected: 

• Soft switch is possible (if desired). This allows to minimize interruption time as UE can be 
synchronised to target cell and have its NTN configuration parameters broadcasted while in the source 
cell. 

• Legacy NTN UE can be handled as per legacy specification (approach would be fully backward 
compatible for them). 

• There is no need to specify a new mechanism to broadcast at the source cell configuration parameters 
that are changed at the time of the switch. The legacy mechanism can be reused. 

• There are no risks and constraints in synchronising target cell with same PCI for legacy UE. 

HO command is still not needed, i.e., any benefit of Rel-18 NTN “unchanged PCI” solution is present. 

8.4 Interference prediction-based proactive resource management  
Problem statement: Efficient management of inter-cell interference is among the major challenges in 
guaranteeing the stringent reliability and latency requirement of ultra-reliable low-latency communications 
(URLLC). Conventional approaches such as hybrid automatic repeat request (HARQ) are not well suited for 
low latency applications. Instead, solutions that can predict the interference conditions and allocate resources 
proactively are found to be more effective. Existing works considered interference prediction in wireless 
networks using a non-linear auto-regressive neural network [PHM+21] and modelling the variation of 
interference as a discrete state space discrete-time Markov chain [MLA+21] for URLLC purposes.  

Methodology: This proposes to pre-process the interference signal before prediction, with the aim of 
improving the prediction accuracy. More precisely, it proposes to decompose the interference signal using the 
empirical mode decomposition (EMD) algorithm. This decomposes the interference signal into several 
component signals called intrinsic mode functions (IMF), each having different frequency components 
[JSM+23]. Each component IMFs are then predicted using the transformer model, which is a deep neural 
network algorithm, as illustrated in Figure 8-15. 

Results – Since each IMF has different frequency components, the proposed approach allows optimizing the 
transformer model for different IMF separately, thereby resulting in higher prediction accuracy, as shown in 
Table 8-3. The prediction is then applied to the resource management algorithm proposed in [MLA+21]. The 
resulting outage performance presented in [GSM+23] is found to outperform conventional resource allocation 
approaches presented in existing literature. It is planned to expand this work by considering a multi-antenna 
scenario with improved interference management approaches.  

 
Figure 8-15: Schematic diagram of the proposed decomposition-based interference prediction framework. 
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Table 8-3: Summary of the RMSE values of conventional and proposed interference prediction methods. 

Algorithm Root mean squared error 
(RMSE) without EMD 

RMSE of proposed EMD 
based approach 

transformer (proposed) 0.77 0.54 

long short-term memory 
(LSTM) 

1.53 1.71 

auto-regressive integrated 
moving average (ARIMA) 

1.00 0.57 
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9 Trustworthiness 
Trustworthiness is one the three core values targeted by Hexa-X-II. Different aspects of a trustworthy 6G radio 
design are explored in this chapter. These include, solutions for exploiting the physical properties of wireless 
channel and device hardware to ensure security against eavesdropping attack; investigating methods to assess 
the impact of jamming against and localize a jammer; and analysing the security and privacy analysis of a 
general cellular JCAS system, including the UE related aspects.  

9.1 Secret key generation for D2D communication 
Problem statement: Physical layer security (PLS) exploits the physical properties of the wireless channel and 
device hardware as sources of randomness to implement security solutions. PLS-based secret key generation 
(SKG) is a promising approach that can be used in hybrid crypto-PLS systems to achieve confidentiality at the 
physical layer. SKG uses the reciprocity and randomness of the wireless channel as a source of entropy and 
hence provides a quantum resistant solution to increase the trustworthiness in sixth generation (6G) 
communication systems. This work implements SKG in the presence of passive eavesdropping attack for 
device to device (D2D) communication systems. It provides a proof of concept (PoC) for SKG which can be 
a viable solution to use cases requiring low computation power, memory consumption. 

While different studies have focused on specific parts of the protocol, there are only few that have implemented 
the full SKG chain [ZLM+20]. A typical assumption in the SKG literature, based on Jake’s model [JC94], is 
that the channel decorrelates at half- wavelength. However, this assumption holds only when the environment 
has infinite uniformly distributed scattering [HDS+16]. Thus, in practice, it is important to account for the 
correlations between legitimate nodes and eavesdropper’s observations. To address this point, a SKG protocol 
is implemented in the presence of passive eavesdropping attack in this work. 

Methodology: For this experiment, three universal software radio peripherals (USRP) are configured, each 
equipped with a single antenna, representing two legitimate users, Alice and Bob, and an eavesdropper, Eve. 
The experiments were done in four scenarios: line-of-sight (LoS) static, LoS dynamic, non-line-of-sight 
(NLoS) static, and NLoS dynamic. The received in-phase and quadrature (IQ) samples at Alice, Bob and Eve 
are used to distil secret keys following the protocol in Figure 9-1.  

 
Figure 9-1: SKG protocol with Alice, Bob and Eve. 

In the randomness extraction phase, legitimate users extract correlated channel observations using a filter bank, 
which are then converted into bits during the quantization step. Mismatches arising from receiver noise and 
imperfect channel estimations are corrected in the reconciliation phase using distributed source coding 
techniques. Evaluation of potential leakage occurs during the privacy amplification stage, ensuring the 
generation of secure confidential keys. In this setup, Alice, Bob, and Eve apply the protocol consistently (same 
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design parameters) using the respective received IQ samples in order to analyse and evaluate the feasible SKG 
rates. In this work, the design parameters are: (1) number of filters in filter bank, 𝐾; (2) number of quantization 
levels, 𝑄; and (3) code rates during reconciliation, 𝑟. The achievable secret key rates are given by, 

𝑅	 = 𝐾 ∗ 	 log. 𝑄 	 ∗ 	(1 − 𝐹𝐸𝑅) ∗ 	𝐻»(𝑟�|𝑟� , 𝑠�) (9-1) 

where, 𝐹𝐸𝑅  is the frame error rates after reconciliation and 𝐻»(𝑟�|𝑟� , 𝑠�) is the min-entropy of Alice’s 
observations conditioned to Eve’s observations and leakage during the reconciliation phase [MMC+23] 

Results: In a TDD setup, Alice and Bob exchanged complex chirp signals. The passband frequency considered 
for the experiment was, 𝑓� = 3.75 GHz, corresponding to a wavelength λ ≈ 8 cm. Eve, acting as a passive 
eavesdropper, was positioned at five different locations relative to Bob, with distances of 2λ, 3λ, 4λ, 5λ, and 
6λ. This translates to distances of 16, 24, 32, etc. in cm, to mount an on-the-shoulder eavesdropping attack. 
Eve recorded all communication exchanges between the legitimate users at each of her positions. To ensure 
the convergence of statistical min-entropy and leakage estimations, a total of 10¼ chirp signals were exchanged 
for each of Eve's positions. The signal bandwidth was set at 𝐵	 = 	70	𝑀𝐻𝑧 , the sampling rate at 𝑓H 	=
	140	𝑀𝐻𝑧, and the symbol duration at 𝑇H = 	17.1875	𝜇𝑠. A detailed explanation can be found in [MMC+23].  

Figure 9-2 represent the achieved SKG rates for the different positions of the eavesdropper given 𝐾 =
	16	, 𝑄	 = 	16 from (9-1). In case of on-the-shoulder eavesdropping attacks, there is no direct correlation 
between the distance of the eavesdropper to the SKG rates achieved, rather this depends on the multipath 
interference patterns at the eavesdropper which is highly specific to the environment. 

 
Figure 9-2: SKG rates achieved for K=16, Q=16 at different positions of Eve. 

9.2 Impact of jamming as a foundation towards resilience 
Problem statement: With the envisioned support of critical use cases and the broader availability of software 
defined radio (SDR) devices, not only the motivation for jamming is higher, but also the ease has been 
increased, making jamming a relevant threat for modern wireless communications [PZ22]. To develop 
effective countermeasures, it is essential to investigate jamming models. 

Hence, as part of the threat analysis, in this deliverable on early results, different jamming models are defined 
and their impact on the performance is evaluated, which is often neglected in related work. However, the 
jamming impact is important, as there exists a trade-off between the damage a jammer creates and its 
detectability. For instance, a weak jammer is hard to detect, but is also a lesser threat and easier to cope with 
[GLQ14]. As a performance measure, the bit error rate (BER) at the physical layer (PHY) is considered. The 
presence of jamming at the PHY impairs the transmission and hence is expected to increase the BER. 

Methodology: For the initial analysis a general single-input single-output (SISO) orthogonal frequency 
division multiplexing (OFDM) system in an additive white Gaussian noise (AWGN) channel with fixed signal-
to-noise ratio (SNR) is considered.  

For the jammer, different models are assumed, which are summarized in Table 9-1. They can be classified into 
modulated (single/multi tone, chirp) and noise jammers (narrowband, pulse noise). The defined models serve 
as prototypes, which in principle could also be combined to derive more complex patterns. All models are 
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normalized such that the total energy is the same, which is than reflected in the jamming-to-signal ratio (JSR). 
For instance, a three-tone multi tone jammer would have only a third of the signal power at each tone compared 
to a single tone jammer at the same JSR. 

Table 9-1: Applied jammer models (modulated & noise jammers). 

Model Description Configuration 
Single tone A single tone, i.e., a sinusoid, is transmitted by the 

jammer on a random frequency.  
Random carrier frequency from the 
interval [0.1, 10] MHz 

Multi tone The multi-tone jammer is the sum of several 
single tones. Here the total power is distributed 
over all tones in order to yield the same JSR. 

Number of tones uniformly chosen from 
{2,3,4,5} 

Chirp 
(sweep) 

Instead of emitting a single tone, the frequency 
here sweeps around a certain frequency within a 
given duration, after which it starts again. 

Random frequency ranges from [5,15] 
MHz 
Random duration from [5,15] µs 

Narrowband This jammer emits white Gaussian noise on a 
limited narrow band. 

Randomly chosen bandwidth from [0.2, 
2] MHz 

Pulse noise Similar to the narrowband jammer, white 
Gaussian noise is generated and transmitted. 
However, now the entire observed spectrum is 
jammed but only for limited durations. 

Randomly chosen pulse period from 
[20, 100] µs 
Randomly chosen duty cycle from [0.1, 
1]. 

Unjammed 
(reference) 

For reference, the system is also considered 
without any jammer 

NA 

Results: The settings of the simulation are summarized in Table 9-2, where the five jamming models are 
investigated. The simulation results are depicted in Figure 9-3. The baseline of the unjammed signal does not 
change for different JSR values, whereas the BER increases for stronger jammers as expected. The pulse noise 
and chirp jammer turn out to be the most efficient of the considered jammers even for lower JSR values.  The 
reduction of the modulation order is not an effective strategy against jamming. 

Future work will include more sophisticated modelling and the investigation of further transmission schemes 
with the aim of having more robust transmission in the presence of a jammer. Also, the jamming models may 
be extended to smarter strategies than static patterns. 

Table 9-2: Simulation parameters. 

Parameter Value 
Data subcarrier modulation 
order (QAM) 

16, 64 

Signal-to-noise ratio (SNR) 10 dB 
Jamming-to-signal ratio (JSR) -10:1:10 dB 
Bandwidth 20 MHz 
Total number of subcarriers 64 
Number of simulated OFDM 
symbols 

25000 
  

Figure 9-3: Bit error rate (BER) of a jammed OFDM 
system for two different modulations. 

9.3 Indoor jammer localisation  
Problem statement: In this section focuses on the process of determining the location of a blind transmitter or 
jammer without using any prior information about its location or the environment. The study of jammer 
localization is considered as this can be useful and essential for maintaining communication integrity, 



Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 142 / 218 

 

enhancing network security, optimizing resource allocation, ensuring regulatory compliance, supporting 
spectrum management, and monitoring unauthorized interference. 

It is considered that a jammer in an indoor space environment using four to six receivers. The jammer will 
transmit various waveforms, not aimed at compliance but aimed at disrupting communication. The question is 
whether the jammer can be accurately located by only the received signal strength.  

Methodology: In the system model considered and the block diagram illustrated by Figure 9-4 [ACN+21], 
there are six sensing units (SUs) and one transmitter Tx1 with known positions. In addition, a jammer with an 
unknown location Tx2 is assumed. It is further assumed the nodes are synchronised using just network 
synchronization.  

The received signal strength indicator (RSSI) is measured in a band of interest (sub-6GHz and millimetre wave 
for future testing) at the SUs assuming that there is receiving power from Tx1. For the current ongoing analyses, 
a log-normal path-loss model is calculated to obtain the respective distances between SUs and Tx1. Considering 
the distances and the present Gaussian noise, the presence and location of Tx1 can be identified and estimated. 
RSSI distance estimation is particularly affected by distance, frequency, multipath propagation, shadowing 
noise, and hardware nonlinearities which are already taken into consideration. However, if this value is further 
affected by the presence of a jammer, this can be identified. In the initial phase of the analysis, simulations on 
Dilution of Precision (DoP) are conducted to optimize the geometric placement of the SUs, aiming to minimize 
the Tx1 position estimation error. Subsequently, in the latter part of the investigation, practical experimentation 
will be performed utilizing the testbed available at IDLAB IMEC [IDLAB-01]. This real-world scenario 
evaluation aims to assess parameters such as data rate, reliability, latency, connection density, coverage, 
sensing accuracy, and jammer localization accuracy.  

 
 

Figure 9-4: System model of indoor jammer localization 
[ACN+21]. 

Figure 9-5: Geometric DOP results for the system 
model. 

Results: The high values of DoP indicate that the current placement of the SUs is not feasible, making it 
impractical to conduct the planned experiments. To further investigate, it is required to change the placement 
of SUs or if not possible, change the experiment lab. The best DoP obtained results were when placing three 
SUs in parallel with the other three SUs, far enough to still ensure the coverage of six. The DoP in this case 
resulted be bounded by 10 as a maximum value, an average of 1.71 with a standard deviation of 0.50, and a 
minimum value of 1.25 as illustrated in Figure 9-5. 

9.4 Security and privacy analysis of a general cellular JCAS system 
Problem statement:  JCAS gives the opportunity to the sensing participants, such as the network infrastructure 
or UEs, supplied with the required functionality, to acquire knowledge regarding the surrounding physical 
environment and the entities inside this environment. In general, this information may be public, or it may be 
private. In addition, due to the advent of automation, there are several use cases, such as automatic driving, 
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where information generated by a JCAS system is envisioned to be used for changing the physical state of 
manned or unmanned objects. Thus, new privacy and security requirement, beyond the existing ones connected 
to communication, need to be introduced to the future communication networks that support JCAS. 

Methodology: Figure 9-6 presents the abstracted block diagram of a cellular JCAS system. As shown in this 
figure, upon the request of an application, called consumer, the physical environment of interest is sensed. The 
consuming application may be hosted in a sensing node (base station (BS) and UE), in the network, or in an 
external infrastructure or node. Possible sensing nodes which undertake the raw sensing measurements are the 
network infrastructure, UEs, or a combination of the network infrastructure and UEs. In general, the sensing 
nodes are expected to produce raw sensing measurements, compressed raw data, or lightly processed data, 
such as matched filtering and peak detection. 

 
Figure 9-6: Abstract architecture of a cellular JCAS system. 

 In some use cases, for example optimization of beam-sweeping in sensing-aided communication, the collected 
data may be used locally. However, in the general case, the previous data will have to be forwarded to a central 
processing unit, here called data flow network, where they undergo advanced processing, under given privacy 
and security constraints, and acquire semantic meaning. Finally, the processed data are given to the consumer 
application following all the required security and privacy requirements.   

A secure and privacy aware JCAS system, such the one presented in Figure 9-6, needs to satisfy that no security 
and privacy breach is possible to happen from the moment that raw measurements are generated up to the point 
where they are either used locally, or are given to the consumer application.  This study focuses on the 
Spoofing, Tampering, Repudiation, Information disclosure (breach or leak), Denial of service, and Elevation 
of privilege (STRIDE) framework [MSFT-01] to identify the security threats encounter by a JCAS cellular 
ecosystem. Furthermore, the study utilizes the well-known Linking, Identifying, Non-repudiation, Detecting, 
Data Disclosure, Unawareness, and Non-compliance) LINDDUN privacy threat analysis framework 
[DWS+11] for identifying possible privacy threats faced by a JCAS system. 

Security Analysis: Using the STRIDE framework for identifying the security threat faced by a cellular JCAS 
system, the following security risk are highlighted. Spoofing: 1) synchronization attacks, 2) raw data spoofing, 
3) confusion, 4) ghost objects, 5) system information, 6) AI theft, 7) information disclosure, and 8) feed of 
false data to the consumer application; Tampering: 1) beamforming tampering, 2) request tampering, 3) timing 
tampering, 4) data tampering, 5) hide object, 6) ghost object, 7) blinding, 8) miss-classification, and 9) object 
modification;   Repudiation: 1) false claim and 2) miss-correlation; Information Disclosure: 1) raw and 
semantic data, 2) detection and correlation results, 3) (non) detected objects, and 4) object reveal; Denial of 
Service: 1) physical denial of service and 2) noise addition; Elevation of privilege: 1) sensing of unintended or 
prohibited areas and 2) object reveal. 

Note that the previous lists of risks for each security thread of the STRIDE is non-exhaustive. An exhaustive 
list requires to consider all possible use cases of JCAS in a cellular network. This is beyond of the scope of 
this study.   
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Privacy Analysis: In this study, the privacy analysis is done using the LINDDUN privacy threat modelling 
framework. In particular, the following privacy threats are highlighted.  

• Linking: the unauthorized connection of processed or unprocessed sensing data with a private entity 
or other data of a private entity; 

• Identifiability: the unauthorized use of processed or unprocessed sensing data for the extraction of the 
identity of a private entity;   

• Non-Repudiation: the false attribution of an action or state to an entity using processed or unprocessed 
sensing data;  

• Detection: the unauthorized extraction of private information (action or state) or insights about private 
information via the observation of the processing and/or transportation of sensing data;  

• Data Disclosure: the unauthorized collection, processing, storage, and sharing of private sensed data 
extracted from processed or unprocessed sensing data (usually provided by the STRIDE framework);  

• Unawareness: the unauthorized collection and processing of processed or unprocessed sensing data of 
private entities without their consent or with insufficient disclosure of the resulting privacy 
implications, the failure of allowing private sensed entities to access and manage their private data, 
and the failure to informs the consumer applications about the privacy implications of using the sensing 
infrastructure; 

• Non-Compliance: the use and processing of processed or unprocessed sensing data and the use of 
sensing infrastructure that violate the industry practices and standards, and the local legislations and 
regulations. 

Note that, due to space limitation, the detailed LINDDUN analysis of the general JCAS system of  Figure 9-6 
is beyond the scope of this study. 

9.5 UE-related security aspects of JCAS 
Problem statement and assumptions: Technological advances not only enable new functionalities such as 
bi- and multistatic sensing but also provide attackers with more powerful tools to perform malicious attacks. 
While the threats to communication systems are generally well-understood, introducing sensing capabilities 
adds a whole new attack surface that needs to be studied thoroughly to avoid potential risks, to establish trust 
and to prevent privacy incidents.  

The value related requirements for trustworthiness, security, and privacy are especially important for sensing 
in the vicinity of users that utilize their mobile devices to perform sensing since the sensing results contain 
sensitive data of the user that may straightforwardly be linked to specific devices and individuals, if no 
precautions are taken. What follows describes potential threats to such user equipment (UE)-centric sensing 
by evaluating and adopting attack schemes from ranging and sensing.  

 
Figure 9-7: System model of UE security in JCAS. 

This study assumes a sensing system that may be comprised of one or more UEs that perform monostatic or 
bistatic sensing, potentially with active involvement of a transmission point (TRP), as shown in Figure . The 
sensing system performs sensing by transmitting and receiving some sensing signal that is reflected by targets. 
It is assumed that all nodes of the sensing system are trustworthy. The malicious agent is placed in the sensing 
channel. It can receive the transmitted sensing signal and to transmit is back to the sensing system.  

Attack models for Ranging and Sensing: In ranging, the purpose of an attack usually is to present a different 
distance between two devices to the ranging initiator, usually a shorter one as often specific action such as 
unlocking a car are triggered if the distance between two devices falls below a specific threshold. Multiple 
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attack schemes are known for this purpose, e.g., replay attack, early detect/ late commit [LKR+21], or the 
Cicada attack [SRZ+21] that exploits cross-correlation properties. Early detect/late commit (ED/LC) is 
especially suited for multi carrier waveforms such as OFDM due to deterministic signal properties. In the case 
a cyclic prefix is used, the attack becomes trivial since the signal may be recorded and delayed.  

For sensing, the attack scheme is not that trivial. Compared to ranging, it is not sufficient to generate one 
additional shorter path. Instead, a consistent environment has to be presented to the victim. This requires a 
detailed knowledge of signal parameters and the relation between victim and attacker. Furthermore, it is 
important that the attacker cannot ‘block’ the actual channel of the victim and only add targets to the real 
channel. Sensing usually relies on angular estimation as a key functionality which is difficult to manipulate in 
real world scenarios. Yet, the area of ‘radar target simulators’ demonstrates that it is at least in a static lab 
environment nicely possible to inject over the air signals to a radar to ‘simulate’ an arbitrary environment 
[SJM+21]. They are commonly realized with analogue or digital delay lines and frequency modulation for 
Doppler, or based on signal and evaluation properties that are specific for frequency modulated continuous 
wave (FMCW) radars.  

ED/LC Attack for Sensing: Simulations are carried out to demonstrate the applicability of ED/LC attacks to 
sensing. This work assumes a monostatic SISO joint communication and sensing (JCAS) ‘Radar’ with double 
use of communication data using quadrature phase-shift keying (QPSK) modulation. To visualize the potential 
attack method, a reference that shows radar measurements of an ‘actual channel’ with a few targets using 
cyclic-prefix OFDM is compared to the attack principle. For the ED/LC, the idea here is that an attacker wants 
to ‘simulate’ the same scenario to the radar.  

To do this, the cyclic prefix (CP) is recorded from a LoS reception, modified by super-positioning delay- and 
Doppler-shifted versions, and retransmitting them at the corresponding tail of the OFDM symbols, where the 
CP was originally taken from. To demonstrate the potential, any additional path loss is neglected, and it is 
assumed that the radar only receives the signal from the attacker. 

The results are shown in Figure 9-8, where it can clearly be seen that the method generates the same radar 
image by just using the CP part of the signal at the tail of each OFDM symbol. As expected, the signal level is 
decreased by 12 dB since only one quarter of the energy is received. Furthermore, the noise level is increased. 
This is caused by the signal only spanning parts of the fast Fourier transform (FFT) time duration, which 
presents a rectangular function that leads to a sinc-function in frequency domain at each subcarrier, leading to 
inter-carrier interference. Yet it is important that the radar image is free of any additional artifacts, making 
such an attack hard to detect.  

Finally, it should be mentioned that in reality the attacker is only able to ‘add’ the desired scene on top of the 
intended measurement of the radar since it can hardly block the scatterers. Also, the exact position of the 
simulated targets depends on the relative distance and relative velocity between radar and attacker as well as 
synchronization offsets in time and frequency. 

 
Figure 9-8: Simulation results for ED/LC Attack. Reference vs. ED/LC Attack using cyclic prefix only. 
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10 Proof-of-concepts and simulators 
This chapter highlights various enabler is a proof-of-concept (PoCs) and simulation tools for the evaluation of 
6G technologies. 

10.1 Link modelling of 6G physical layer 
System model: A link-level simulation tool of the downlink 5G PHY has been developed, including models 
of multi-cluster propagation channels in the sub-THz bands. The simulator provides performance evaluation 
of D-MIMO and beamforming. The aim is to understand the impact of these enhanced PHY schemes to 
improve the system performance and to optimize the parameters, especially in mmWave (FR2 frequency 
bands) and sub-THz.  

The simulation chain presented in Figure 10-1 has been implemented, based on the 3GPP specifications 
[38.104], [38.211], [38.212]. The blocks are developed in Python, using the Sionna open-source libraries as a 
starting point [Hoy22], offering substantial flexibility in the development, choice of the use cases, etc. It allows 
the integration of new algorithms/configurations so that the chains can easily evolve. 

 
Figure 10-1: Diagram of the 6G PHY layer simulator. 

The data flow is randomly generated by a bit generator, and feeds the chain of baseband signal processing 
blocks: segmentation, cyclic redundancy check (CRC), interleaving, etc. The forward error coding scheme is 
the LDPC specified in [38.212]. OFDM modulation is implemented, and the signal samples are convolved 
with a randomly generated channel impulse response. The reception part of the chain includes the 
demodulators and decoders, leading to an estimation of the transmitted bits. A dedicated block compares the 
initially generated bits with the estimated bits and computes the bit error rate (BER) and block error rates 
(BLER). 

The first version of the simulator includes an ideal digital MIMO precoding (e.g., based on the singular value 
decomposition of the channel matrix). In a future deliverable, the obtained BER vs. SNR results are used as 
reference, and further compared with other MIMO schemes, such as D-MIMO and hybrid beamforming, as 
discussed in sections 5.1.1 and 5.2.5. 

The fast-fading channel model is initially based on the 3GPP specification [38.901], which is valid for carrier 
frequencies ranging from 0.5 to 100 GHz. This model should evolve towards higher frequencies. The blocking 
effect that occurs at high frequencies is also considered. At the receiver, the noise is modelled as a Gaussian 
random variable. 

The main input parameter is the received SNR that includes the transmit power, the path loss, and the noise 
variance. The antenna gains and orientations are included in the fast-fading component of the propagation 
channel. 

The aim of the simulator is to evaluate the performance of the future 6G PHY layer in a large variety of contexts 
(spectrum, environment, etc.), therefore it can be used to determine whether the conditions of the use cases 
defined in WP1 are met. The simulations will provide the following metrics: BER, BLER, SNR, spectral 
efficiency, throughputs. 
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The proposed link-level simulator is defined at the baseband level, RF aspects are not modelled. The signalling 
is not modelled so that only data bits are implemented. The transceiver-receiver synchronization is assumed to 
be perfect. 

10.2 Flexible modulation and transceiver design 
This section describes initial implementation of a flexible transceiver. This system enables experimental 
verification of mobile communication system applications and use cases. The idea for this prototyping system 
is to utilize the flexibility provided by SDR devices to allow testing of dynamic scenarios and challenging use 
cases for which static configuration of testbed components is not sufficient. Figure 10-2 illustrates an overview 
of the flexible transceiver system and its components, including  

• SDRs: 4 USRP X310 are used to provide 4 RF chains for TX and RX (4x4 MIMO), these devices are 
used for generating and receiving of radio signals 

• Controller: NI PXIe-1082 Chassis with NI PXIe-8133 embedded controller running LabVIEW 
software. This component is responsible for forwarding control signals from the host to the SDRs. 

• RF Frontend: the configuration of our system allows for different frontends, such as dedicated 
beamforming networks of phased arrays, butler matrices, or antenna arrays, etc. For instance, in the 
analogue multicarrier demonstrator, a combined with a dipole antenna for joint transmission and 
reception of the signals for all RF chains. The purpose of the frontend is to radiate/receive radio signals 
that are generated/processed by USRP’s. 

• Host: any computer which runs an application programming interface (API) to generate control 
signals/remote procedure calls (RPC) for the controller to orchestrate the flexible transceiver. The Host 
also provides the in-phase and quadrature (IQ) data samples that are transmitted and receives the IQ 
samples provided by RX signal chains. 

 
Figure 10-2: Schematic of flexible transceiver. 

Signal flows are indicated by arrows. Red arrows are used to highlight IQ data and blue arrows to indicate 
control signals. 

The goal of this transceiver is to provide abstraction to allow researchers to experiment on real hardware with 
little overhead by merely calling API functions in common programming languages such as Python or 
MATLAB. The API interacts with the controller, using RPC calls to configure and control the experiments 
and measurements. A user of the flexible transceiver can provide starting configuration of the experiment for 
TX and RX chains. A vector of IQ samples is provided to the API by the user. These samples are transferred 
to the controller, which forwards them for transmission. The signals sent from each TX chain are independently 
adjustable, allowing for digital beamforming. The receiver records the received signal, and the received IQ 
samples are forwarded via the controller to the user. Synchronization and timing are managed by the controller 
to allow for ease of use of the flexible transceiver system. Synchronization is achieved via a 10 MHz reference 
signal and a 1-pulse-per-second (PPS) for triggering. Furthermore, during experimentation, the RF parameters 
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for each chain can be dynamically adjusted, including signal bandwidth, gain, enabled RF chains, carrier 
frequency, local oscillator (LO) frequency, and sample. 

An initial laboratory prototype version of the flexible transceiver system is illustrated in Figure 10-3. This 
version provides basic functionality, including basic API functions to configure TX/RX chains and select 
custom waveforms represented by the IQ samples sent to the controller.  Additional features are under 
development, and will be incorporated in the future deliverables, such as dynamic adjustment of parameters 
by RPC, phase coherence of TX/RX which is required in some transmission schemes.  

 

Figure 10-3: Flexible transceiver laboratory setup with combiner. 

10.3 AI-native air interface 
This subsection describes two demonstrations of crucial enablers of an AI-native air interface. The objective 
of these demonstrations is to show that ML can provide real-world performance gains in compressing channel 
state feedback and in enabling pilotless OFDM transmissions. 

10.3.1 ML-based channel state feedback compression in a multi-vendor scenario 
This PoC aims to demonstrate the feasibility of cross-vendor cooperation, between UE-side ML Model (also 
referred to as Encoder) and NW-side ML Model (also referred to as Decoder), to enable joint AI solutions for 
enhanced channel state feedback compression.  

In Section: ML-based channel state feedback compression in a multi-vendor scenario, a simulation study is 
presented that demonstrates that sequential training of multi-vendor ML models achieves similar performance 
compared to a joint training solution and that a common NW decoder model can be trained through sequential 
training to deal with multi-UE vendor scenarios. See that specific Section for the results obtained.  

Given the simulation results, the next step is the lab testing and Over-The-Air (OTA) evaluation of the 
proposed scheme. This section describes the planned process for the data collection and tests for this PoC. It 
is composed of two parts: a lab test and an OTA test. For the lab test, a gNB and a UE device will be connected 
through an 8x4 channel emulator. Certain fading channel types (to be defined upon OTA evaluation) will be 
configured for data collection and testing. To emulate a multi-vendor scenario, the lab testing and OTA 
evaluation will use a Nokia gNB and a Qualcomm UE.  
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Figure 10-4: Illustration of the sequential training process. 

The lab testing process is as follows: 

1. Data collection stage: the UE will log estimated CSI RS channels received through the channel emulator 
for a certain duration (to be defined upon OTA evaluation) to collect sufficient channel data for training. 
This is the step 1 depicted in Figure 10-4. 

2. Offline-training stage: The UE will first train its encoder models with CSI-RS channels collected in the 
lab (step 2a.), and then shares the dataset with the network, i.e., this is the dataset sharing step. Two encoder 
ML models, with different  type of architecture, will be trained separately to mimic two different UE 
vendors. Each encoder will share a dataset with the network. The network will then train the decoder 
models (step 2b NW-side model training). With the individual dataset, the network will train the dedicated 
decoder model for each encoder. With mixed dataset, the network will train a common decoder that can 
work with both encoders. 

3. Inference test stages: Different UE encoder and network decoder models will then be deployed at the UE 
and gNB side (step 3. Deployment) in separate tests. The gNB decoder output will be used to calculate the 
DL precoder for the PDSCH. The DL performance will be measured in a lab environment with ML-based 
CSF. The squared generalized cosine similarity (SGCS) will be evaluated. The SGCS is calculated based 
on the UE logging of encoder input and encoder output and the corresponding gNB logging of decoder 
output. The throughput and SGCS are compared for 4 different encoder/decoder combinations, 
specifically,  

• Encoder 1 + dedicated decoder 1,  
• encoder 1 + common decoder, 
• encoder 2 + dedicated decoder 2, 
• and encoder 2 + common decoder. 

If each encoder model performs similarly with both its dedicated decoder and the common decoder, it 
means that a common decoder, trained sequential, is a viable solution to deal with multiple UE vendors in 
the network. If this is the case, the lab test is successful and the OTA test can begin. 

The OTA test will be conducted in an outdoor test area, e.g., a parking lot, with the gNB installed at an elevation 
of approximately 20 meters to cover the area. 

1. Data collection stage: OTA CSI-RS channel will be collected during both mobility and stationary tests. 
The mobility routes will be chosen to have reasonable coverage in the test area, while the stationary 
locations will be chosen to sample different UE-gNB distances as well as different angles.   

2. Offline-training stage: The mobility data collected from step 1 will be used to train the UE encoder models. 
Similar to the lab test, two different UE encoder models will be trained. The corresponding data sets will 
be shared with the network to train its decoder models. Similar to the lab test, the network will train a 
dedicated decoder for each encoder, and a common decoder model for both encoders. The trained UE 
encoder and gNB decoder models will then be used to run offline inference tests applied to the stationary 
data. If the encoder/decoder models give reasonable SGCS when applied to stationary data, the models are 
ready to be tested in OTA for inference test.  

3. Inference test stages: Inference tests at the stationary locations will be performed. Similar to lab test, 
different encoder/decoder combinations will be deployed, and the SGCS will be evaluated. If for each 
encoder model, the dedicated decoder and common decoder gives similar performance, this proves that 
common decoder based on sequential training is a viable solution to deal with multiple UE vendors in the 
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network. The tests will be repeated in multiple runs. If different runs give comparable results, this will 
prove that the encoder and decoder models are stable, and the OTA test results are consistent. In that case 
the OTA test will be considered as passed. 

10.3.2 Pilotless operation with a partially learned air interface 
System model: The primary target of this PoC is to demonstrate the practical feasibility and performance gains 
of an ML-based pilotless air interface. The concept is shown in Figure 10-5, which illustrates the considered 
OFDM link. In particular, the approach involves learning the transmitter constellation (DeepTx) and receiver 
algorithm (DeepRx) to achieve a system which can communicate without any channel estimation pilots. This 
will result in throughput gains via the reduced overhead. 

 

 
Figure 10-5: AI-based pilotless proof of concept. 

The basic approach of the considered PoC is depicted in Figure 10-6, which shows the training and validation 
methods. In particular, the required ML models are trained in a simulator, after which the models are deployed 
to the target hardware and the performance is validated with real RF measurements. This ensures that the 
results show two aspects: (i) a simulator-trained model can generalize to unforeseen real-life channels, and (ii) 
a ML-based air interface can outperform a pilot-based system. It should also be noted that this PoC is a SISO 
variant of the approach described in Section 6.1.1. 

 
Figure 10-6: Depiction of the training and measurement setup. 

The PoC is based on a GPU-based implementation of 5G L1, where some of the functions can be replaced 
with pre-trained ML models (in this case, the constellation shape and the receiver algorithms are replaced). 
This makes it also possible to compare the performance of the ML-based air interface to a corresponding 5G 
air interface, using the very same hardware. The RF signals are processed with USRP X310 software defined 
radio, which is connected to the GPU with a fibre connection. The channel effects are produced by a channel 
emulator, which allows for experimenting with different channel environments under laboratory conditions. 
In practice, the performance of the proposed approach is compared to the baseline by conducting back-to-back 
measurements with both approaches under the same channel conditions. 

Measurement results: The considered air interface options were measured under a vehicular SISO scenario 
with 60 km/h of mobility, using a 16-point constellation. The resulting throughput gain of the ML-based 
approach was measured as 21% over a 5G baseline. The gain can be attributed to two different factors. Firstly, 
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the higher accuracy of ML-based DeepRx reduces the block error rate, especially under high mobility levels. 
Secondly, there is a spectral efficiency improvement from pilot overhead removal which also translates to a 
throughput gain. Altogether, this result shows that the proposed approach achieves tangible gains with real RF 
signals. The specifications and assumptions are listed in Table 10-1. 

Table 10-1: Assumptions for AI/ML-assisted transmissions. 

Type of the used AI/ML 
training method Supervised 

Training  Offline 
‘Features’ and ‘labels’ for 
training the models  Autoencoder-type approach for detecting transmitted bits 

Type of the AI model CNN 
Model architecture Convolutional ResNet with a learned multiplicative layer 
Loss function for training Binary cross-entropy 
Model deployment Transmitter and receiver 
Training scheme Centralized 

10.4 Bistatic joint communication and sensing 
System model: The implemented bistatic sensing system leverages evaluation kits (EVK) from Sivers 
Semiconductors in 57-71 GHz for the transmitter and receiver radios, coupled with the RFSOC from Xilinx 
for efficient and high-speed signal processing according to Figure 10-7. This setup is specifically designed to 
utilize 5G waveforms, enabling us to explore the capabilities of joint bistatic sensing and communication 
within a communication framework. The objective is to demonstrate a joint communication and sensing proof 
of concept that showcases the potential of using the same hardware for both communication and sensing. 

Demonstration of the POC through measurements: Using the 5G NR standard waveform, different 
waveforms can be transmitted using QPSK and 16-QAM to 256-QAM signals for the communication 
demonstration. The SSBs for synchronization is used according to 5G NR standard. 

A bistatic sensing scenario is considered, in which the 5G waveform is used for sensing. The sensing is 
maintained through beam-pair power measurements and time of arrival (TOA) estimation. In both, 50 distinct 
TX beams and 56 distinct RX beams are used for beam steering in the horizontal dimension and scanning the 
environment for targets. To measure the moving target and remove the background effect, a background 
subtraction phase is also applied to the beginning of each measurement. The sensing algorithms are 
implemented as two parts, where the first part is implemented in the FPGA and the second post-processing 
part is implemented in the PC. This approach can decrease the processing time and make the update rate of 
sensing algorithm (for object detection) less than a second. A snapshot of the beam-power map, TOA, and 2-
dimensional target location are depicted in Figure 10-8. 

  

Figure 10-7: Qamcom RF setup (including the Xilinx board and Sivers EVK) for joint communication and 
sensing.  
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Figure 10-8: Beam-power map on lower left figure (point cloud power of detected targets), TOA on upper left 

figure, and estimated position using Qamcom JCAS setup on the right figure. 

10.5 Power consumption of JCAS 
This section focuses on experimental analyses of the power consumption and consumption factor on a 
mmWave setup. The planned experiments will include according to Qamcom RF setup in Figure 10-7, a 
transmitter, receiver, and power analyser. The power consumption values will be measured for different 
situations. 

System model: Considering the expected power consumption and consumption factor changes on mmWave 
systems, it is decided to use the Qamcom Joint Communication and Sensing setup presented in Figure 10-9 to 
perform the power consumption measurements. The setup contains the RF Module EVKs that are “plug and 
play” platforms, including patch antennas to evaluate the Sivers Semiconductors beam steering RFICs - TRX 
BF/01 for unlicensed 5G (IEEE 802.11ad [IE80211]) and TRX BF/02 for licensed 5G. Frequency ranges 
include 24-29.5 GHz (TRX BF/02) and 57-71 GHz (TRX BF/01). The maximum power lies between 15-40 
W.  The power consumption measurements and analyses will include different states: (i) power required to 
turn the device on while the radio interface is down; (ii) power consumption required to generate traffic when 
the radio interface is up; (iii) power consumption of on and off beacon period; (iv) power consumption during 
the transmission and reception modes; (v) power consumption when changing propagation conditions (LoS, 
NLoS). Further, in the measurements, parameters that are important include signal to noise ratio (dB), 
bandwidth (Hz), frequency (Hz), transmit power (W or dB), receiver power (W or dB), respective gains at the 
Tx and Rx (dB), distance (m), number of antennas, received signal strength for each beam (dB), data rate (bps), 
estimation error or accuracy (m) on sensing (required for the selected gesture recognition tests), environment 
between transmitter and receiver, and sampling rate (Hz).  

The power consumption analyses will include the level of the transmit power required to ensure the minimum 
SNR at the receiver, and the impact that these values have on power consumption and consumption factor. For 
the measurements, Keysight N6705B Power Analyzer will be used.  

Assumptions: All individual device components’ efficiency values will be taken from the technical 
documentation of the device.  
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Figure 10-9: Qamcom RF setup together with RF modules for joint communication and sensing. 

10.6 EMF Assessment  
Background: D-MIMO is considered as a potential candidate technology for beyond 5G and 6G systems as 
it could offer a solution to break the interference limitation, thus achieving higher network capacity. When a 
new generation of mobile technology is introduced, questions about electromagnetic field (EMF) exposure 
may be raised. The EMF exposure limits are given in terms of basic restrictions (physical quantities inside the 
body) and reference levels (external field quantities derived from the basic restrictions) according to the EU 
recommended limits and the international EMF exposure guidelines, such as those provided by the 
International Commission on Non-Ionizing Radiation Protection (ICNIRP) [ICNIRP20].  

Aim of the work: To simulate EMF exposure from a D-MIMO system, a full-wave analysis of the antennas 
and of the surrounding electrically large environment is infeasible due to the extremely large computational 
demand. A solution is to use hybrid simulation approaches, with which the antennas and the human body 
model (phantom) are simulated by full-wave methods, while the field propagation is simulated by asymptotic 
approaches, such as the ray-tracing method. In this study, a hybrid simulation scheme is developed to assess 
the downlink EMF exposure from 6G D-MIMO deployments. The same scheme is also applied to 5G massive 
MIMO (mMIMO) deployment for the sake of comparison. Two precoding schemes, including single-user 
equal-gain transmission (EGT) and multi-user centralized zero-forcing (CZF), are considered. The study is 
conducted in a realistic industrial indoor environment at 3.5 GHz using representative array antenna designs 
and a full-body phantom. 

 
Figure 10-10: Battery factory model used for the study: (a) top view, (b) side view, and (c) perspective view.  
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Figure 10-11: Workflow for the EMF exposure assessment for D-MIMO and mMIMO technology by using the 
hybrid simulation scheme 

System model: The employed indoor industrial environment is a battery factory model, as shown in Figure 
10-10, provided by CST Studio Suite. The interior size of the factory is 48.8 m × 72.7 m × 7 m. The EMF 
exposure levels were evaluated at 3.5 GHz for three deployment scenarios, two using D-MIMO (one with 24 
distributed radio units (DRUs), and one with 6 DRUs), and one using mMIMO technology (one array antenna). 
For each D-MIMO DRU, a 2 × 2 array antenna was used, while for mMIMO, a 4 × 8 array antenna was used. 
The antenna element of these arrays was a dual-polarized circular patch antenna. The UE was represented by 
a half-wavelength dipole.  

In order to compare the EMF exposure for different number of UE antennas and different precoding schemes, 
the EMF levels were normalized to the total configured power of 1 W of the system. Due to the power tapering 
used in CZF, the total radiated power was slightly lower than 1 W. Also, the power radiated to serve different 
UEs was not the same as the power tapering differs for the antenna ports among the layers. 

In total, 20 well separated UE positions were selected for statistical analysis of the EMF exposure levels. For 
the different deployment scenarios, including one D-MIMO scenario with 6 DRUs, one D-MIMO scenario 
with 20 DRUs, and one mMIMO scenario, 20 different UEs (for EGT) or 20 UE combinations randomly 
chosen from the defined UE positions (for CZF) were used to evaluate the statistics. In all cases, there was one 
body phantom per scenario, which was placed around one of the served UEs at distance of 1 m. 

Simulation workflow: A flowchart of the developed hybrid simulation workflow is presented in Figure 10-11. 
CST Studio Suite 2022 was the software used for conducting the study. The time-domain solver based on the 
finite integration technique (FIT) was used for full-wave simulations, and asymptotic solver based on the 
shooting and bouncing rays (SBR) method was used for ray-tracing simulations. The quantities obtained from 
the simulations can be found in Section A.2.4. 

Results: Examples for the incident power density (Sinc) distributions for CZF with 4 UEs, D-MIMO with 6 
DRUs and 24 DRUs, and mMIMO deployment scenarios, are presented in Figure 10-12. These examples 
correspond to one combination of 4 simultaneously served UEs out of the 20 simulated UE combinations. The 
Sinc distributions in this figure are shown for the horizontal plane z = 1.33 m.  

As can be seen from the figure, Sinc is overall lower for the 24 DRU scenario compared with Sinc for 6 DRU 
scenario. This can be explained by the fact that power is more spatially distributed with the increasing number 
of DRUs. The mMIMO scenarios result in a higher peak value of Sinc compared to DMIMO due to the higher 
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EIRP from a single radio unit, while the median levels remain comparable between D-MIMO and mMIMO 
scenarios. In all studied cases, the EMF exposure, considering both incident power density and SAR, is well 
below the limit value. 

              
                                               (a)                                                    (b)                                                   (c) 

 

Figure 10-12: Incident power density (Sinc) distribution for CZF-precoding with K = 4 UEs for one of the studied 
scenarios for a total configured power of 1 W for: (a) D-MIMO with 6 DRUs, (b) D-MIMO with 24 DRUs, and 

(c) mMIMO. 

10.7 Channel measurement data and model 
Background: Channel measurements play a critical role in channel modelling. The most common methods of 
channel modelling, such as the stored channel, deterministic, and stochastic channel models, are based on 
multipath data obtained from measurements. A stored channel model directly replays the measured channel 
impulse responses which makes the generated channels realistic but can only generate as many channels as 
there are in the measurements. Measured channels are also indirectly used in deterministic channel modelling, 
where the channel response is calculated by allowing rays to propagate and interact with different objects in 
the environment. The amplitude and phase contribution of each interaction depend on the electromagnetic 
characteristics of each object, which may either be based on a standard or estimated from the measurements. 
The latter also pertains to the so-called calibration of ray-based propagation tools used for deterministic channel 
modelling. Finally, stochastic channel models heavily rely on measured multipath data to determine the input 
channel parameter values. These models can produce large amounts of multipath data with probability density 
functions consistent with the measured channels for a given scenario. In this section, the measurements 
performed at sub-THz and Frequency Range 3 (FR3) bands and the channels generated using the developed 
channel models are presented. 

Channel measurements at 142 GHz: Radio channel measurements were performed in an indoor entrance hall 
and outdoor sites, including suburban, residential, and city centre environments both in line-of-sight (LoS) and 
non-LoS (NLoS) link conditions. The measurements were taken over a maximum distance of 65 meters for the 
indoor site and up to 170 meters for outdoor sites. The frequency range scanned was 140 GHz to 144 GHz, 
using a vector network analyser with frequency converters. The Tx and Rx have omnidirectional and rotator-
mounted directional horn antennas, respectively. Both Tx and Rx antennas are vertically polarized. The Rx 
antenna sweeps the whole horizontal plane with a 5° azimuth step while its elevation is kept at 0°. More 
information on the channel sounder architecture and measurements can be found in [DHH21, DH23]. The data 
obtained from these measurements were single-directional, but were extended to double-directional using a 
ray-launcher [DH23]. 
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Figure 10-13: COTS instrument-based channel sounder used for measurements at 150 GHz. 

Channel measurements at 150 GHz: Another set of channel measurement campaigns at 150 GHz are 
considered. Preliminary measurements have already been conducted in corridor environments. In the narrow 
corridor, one LoS and one NLoS location with less than 10 m link distance are measured. Another measurement 
is conducted in a wider corridor where several LoS locations at link distances around 20 m and 30 m. There 
are a few more indoor measurements planned for auditorium, smart factory, and workshop environments. All 
measurements, both performed and planned, are at the centre frequency of 150 GHz frequency and with 2 GHz 
bandwidth. These measurements use a modular sub-THz channel sounder using commercial off-the-shelf 
(COTS) instruments as shown in Figure 10-13. The sounding sequence is generated on a personal computer 
and downloaded to an arbitrary waveform generator (AWG). The modulated IF signal from the AWG is then 
filtered, up-converted, and amplified before being radiated to the Tx antenna. At the Rx side, a similar process 
is applied until the received signal is digitized by a real-time oscilloscope. Both Tx and Rx antennas are 
vertically polarized and mounted on a rotator. Additional information on the design of this channel sounder is 
presented in [ZFK+24]. 

Channel measurements at 15 GHz: There is also a measurement planned at 15 GHz, which lies in the FR3 
band, in a university campus with LoS and outdoor-to-indoor link conditions. The Tx base station will be 
installed on a building rooftop, and its antenna half-power beamwidth will cover the area where multiple 
receiver (Rx) antenna locations will be placed. The channel sounder will use software-defined radios equipped 
with frequency converters to transmit and receive wideband signals, as shown in Figure 10-14. The sounder 
will also rely on stable clocks to ensure synchronization between the Tx and Rx. 

 
Figure 10-14: Software-defined radio-based channel sounder used for measurements at 15 GHz. 
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Channel model: The data obtained from the measurements at 140 GHz have already been processed and 
utilized to develop stored and stochastic channel models. The resulting double-directional multipath data and 
stored channel model are discussed in Section 3.2 of [HEX23-D23] and can be accessed in [DHK23]. 
Furthermore, the standardized stochastic channel model, 3GPP TR 38.901, was adopted to generate arbitrary 
channel responses. The channel model parameters, reported in Section 3.4.1 of this deliverable, are first derived 
from the measured multipath data and used as an input to the 3GPP TR 38.901 channel modelling framework. 
Exemplary power angular delay profiles (PADP) of three arbitrary links are shown in Figure 10-15. Future 
work will consider additional analyses of the channels and channel models based on 150 GHz and 15 GHz 
measurements. 

 

 
Figure 10-15: Sample PADPs of generated channels using the 3GPP TR 38.901 channel model with the measured 

142 GHz channel model parameter values. (left) Azimuth angle of arrival (right) Azimuth angle of departure. 
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11 Conclusions and next steps 
Adopting a holistic flexible design approach to 6G radio presents a promising pathway towards meeting 
stringent technical requirements for a broad range of emerging use cases, while considering foundational 
values of sustainability, trustworthiness, and inclusion. This approach is inherently challenging, as it demands 
interdisciplinary expertise and deep understanding of the interdependencies among various radio components, 
including hardware, architecture, deployment, signal processing techniques, protocols, and system 
engineering. Additionally, the presence of numerous technical candidates adds complexity and introduces a 
vast number of parameters to the radio optimization process. Moreover, design and validation require advanced 
modelling, computing, simulation, and prototyping tools. As a step towards realizing this vision, this report 
contributes to establishing a radio design framework and defines the interfaces with other modules in the 
overall 6G system. This framework aids in mapping various technical innovations and determining their 
interactions. Additionally, this report details a wide range of technological components and enablers at 
different levels of the radio system, spanning a broad spectrum from sub-6 GHz to THz, and includes various 
deployment architectures and options from centralized to distributed, as well as the investigation of new 
technical components. Various studies are presented and summarized, highlighting the scope, methodology, 
and results, which facilitate a better understanding of their potential roles and how they interact with different 
components in the radio system. Such comprehensive groundwork is essential for progressing in the integration 
phase. Furthermore, the report presents progress in developing design tools for channel modelling, especially 
for unexplored spectrums, simulation frameworks that consider multiple aspects, and proof-of-concept (PoC) 
platforms for assessment under realistic conditions.   

The following paragraphs summarize the outcomes of the studies in this document: 

Channel modelling: The channel parameter values for a stochastic channel model based on sub-THz 
measurements of indoor and outdoor environments that can be used to generate realistic channels were 
reported. In addition, a modification to this channel model to account for the near-field effects by determining 
the propagation distance between each transmit and receive antenna element was proposed. The coverage 
analysis at THz frequencies shows that such a frequency regime is suitable for providing focused coverage 
spots in a range up to roughly 100 m, depending on the acceptable system path loss requirements. It was also 
shown that the reflection loss strongly depends on the reflection point on the location of materials including 
mortar, carpet tile, and patterned glass at sub-THz frequencies. A simple model of a communication link with 
reconfigurable intelligent surface (RIS) is derived, revealing the negligible and significant signal-to-noise ratio 
(SNR) gains of the passive RIS and active RIS, respectively. Lastly, a review of the existing channel models 
and requirements for joint communication and sensing (JCAS) shows that hybrid models or site-specific 
models may be preferred over classical statistical geometric models for performance evaluation purposes. 

MIMO and RIS techniques: The reports present studies on various multiple-input, multiple-output (MIMO) 
techniques. The balance between spectral efficiency, sum rate, and energy efficiency has been deeply 
investigated in several contributions. The clustering approach is applied to enhance the performance of the 
worst user, while a proposed beamformer design primarily focuses on improving the average sum-rate 
performance. Furthermore, a collection of one-bit techniques have been proposed for finding a balance that 
maintains a satisfactory level of spectral efficiency while reducing energy consumption. This chapter analyses 
and simulates two transmission methods for distributed MIMO (D-MIMO): coherent and non-coherent. The 
performance of the proposed rotary antenna is comparable to that of a conventional antenna. Massive MIMO 
(mMIMO) sub-THz is studied, showing that the sub-6GHz assisted and effective antenna dimension reduction 
can improve the performance of the sub-THz system. RIS-assisted deployment techniques are considered, 
namely, integrated access and backhaul (IAB) and D-MIMO, as well as dynamic RIS channel estimation. The 
modulation technique of RIS is also investigated in order to achieve low-rate data transmission. 

Waveforms and modulation schemes: The scope is divided into two parts, sub-THz waveforms and 
constellation candidates, and waveforms and modulation enhancements. In the first segment, CP-OFDM and 
DFT-s-OFDM eligibility were analysed for sub-THz communications, considering phase noise (PN) 
impairments on the system numerology. The simulations indicated an improved block error rate (BLER) and 
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resistance to PN for larger subcarrier spacing. Another contribution explored the energy efficiency of 1-bit 
quantized zero-crossing modulation (ZXM) over 120 GHz transmissions. The results show a higher energy 
efficiency compared to QAM schemes at the cost of peak data rate. Furthermore, two new shapes for polar 
constellations were investigated, and simulations revealed resistance to higher Doppler shifts when compared 
to QAM schemes. Finally, a sub-THz hardware setup was validated using SC-FDE waveform and M-QAM 
schemes. In this context, tests indicated communication feasibility at 144 GHz, achieving low BER values. 
The second part introduces a new waveform entitled adaptive multicarrier modulation (AMCM), a novel low-
density parity check (LDPC) code parity matrix design, and an optimisation proposal for bit interleaved coded 
modulation (DBICM). AMCM is evaluated in terms of power spectral density (PSD) and out-of-band 
emissions, and the preliminary results indicated a significant gain compared to cyclic prefix (CP)-OFDM. The 
new LDPC code parity matrix provided a faster and more efficient decoding with half the iterations used in 
current 3GPP standards. Lastly, the optimised solution for DBICM significantly reduced its complexity and 
allowed an effective identification of the delayed schemes with reasonable accuracy. 

AI applications in radio interface design: Different implications of the artificial intelligence/machine 
learning (AI/ML) advancements are emphasized, including enhanced network performance, improved energy 
efficiency, and the facilitation of more intelligent and adaptable telecommunication systems. A key highlight 
from the modulation and coding segment revealed how AI could optimize MIMO waveforms, enhancing 
spectral efficiency by 15-20% at signal-to-noise ratios below 15 dB. In the domain of channel state information 
(CSI) acquisition, the employment of AI-driven techniques demonstrated the potential to reduce overhead 
significantly while preserving the accuracy of channel information, even in a multivendor scenario, a crucial 
step towards achieving optimal network performance. Moreover, CSI prediction through ML can be used to 
improve robustness of CSI compression methods to channel aging in dynamic networks. The discussion on 
AI-based MIMO transmissions presented innovative approaches to user pairing and beamforming, which are 
vital for maximizing network capacity and user throughput, and proposed solution to reduce power 
consumption through antenna muting and optimize pilot assignment in D-MIMO scenario. Notably, the 
application of AI for hardware impairment compensation illustrated a 35-45% gain in energy efficiency at 
throughput levels ranging from 1.6 to 2.0 Gbps, showcasing AI's capacity to enhance transmission quality. 

JCAS: Deployment scenarios and system optimization scenarios for JCAS are investigated. These scenarios 
encompassed both localization and sensing applications, including monostatic, bistatic, and multistatic 
sensing. It is shown that the performance of 6G’s non-terrestrial network (NTN) and RIS localization is 
dependent on the relative orientation between the RIS and the NTN. It is also shown that the integration 
between monostatic and bistatic sensing through random finite set theory has the potential to enhance the 
sensing performance compared to the standalone solution of the individual modalities. In the system 
optimization works, it is shown that increasing the CP duration in OFDM systems increases the maximum 
sensing distance between the target and the receiver in bistatic sensing scenarios. Furthermore, it was shown 
that having access to 6 degrees of freedom (6DoF) estimates of the UE position and orientation can enhance 
the performance of both positioning and communication functionalities through beamforming optimization. 
Finally, various strategies were investigated to facilitate bistatic sensing between UEs. As a next step, it is 
planned to conduct a cross-layer study, including both physical layer and higher layers perspective, to explore 
how optimizing various elements in the communication and sensing pipelines will enhance the JCAS 
performance. Moreover, it is planned to perform extensive testing of the proposed methods. In these tests, 
various modifications to the strategies discussed in this report will be explored. For instance, data transmission 
will be investigated; instead of pilot signals, and fusion between sensing modalities will be conducted using 
advanced parametric signal processing techniques. Furthermore, the beamforming work is planned to develop 
6DoF tracking filters for mobile scenario and learning-based beam design methods to reduce the computational 
complexity. Finally, the bistatic protocols work might be extended to monostatic and multistatic scenarios 
between UEs and base station (BS).  By investigating these different aspects of JCAS, we come closer to 
realizing the true potential of JCAS systems. 

Spectrum sharing and spectrum access: For spectrum sharing, a deep dive a deep dive into terrestrial (TN) 
and NTN coexistence is presented. Assumptions and models for spectrum sharing with fixed-satellite service 
stations are revisited, and it is shown that including more accurate assumptions on radiation patterns, UE 
deployments and BS activity reduces the separation distance and thus relaxes the spectrum sharing constraints. 
Thereafter, two sharing case studies are introduced: First, interference caused by 6G networks on fixed satellite 
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service (FSS) UL in the centimetric range (7-15 GHz) was studied; Second, a stochastic geometry-based 
framework for modelling S-band sharing was presented. The two studies introduce the modelling approaches 
for coexistence and provide insights on problematic scenarios with high interference. In addition to TN-NTN 
coexistence, multi radio access technology (RAT) spectrum sharing between 5G and 6G networks is discussed, 
and the respective requirements and recommendations are introduced. Furthermore, two approaches for low-
latency spectrum access are presented. First, risk-informed random access is introduced. Here, a simulative 
assessment of interference levels for ALOHA and carrier-sense multiple access (CSMA) is presented. Second, 
schedule-based access with a two-step connection procedure is introduced. The use of an omni-direction RAT 
is proposed to facilitate directional access in sub-THz spectrum, allowing to reduce the beam tracking overhead 
and overall latency. Finally, enhancements for seamless NTN integration towards inclusive radio interface and 
a proactive resource management approach based on interference prediction are presented. 

Trustworthiness: The core value of trustworthiness encompassing key concepts like security, integrity and 
privacy are investigated. It is shown that exploiting the randomness of the wireless channel and device 
hardware to generate secret keys in a device-to-device communication systems can ensure security against 
eavesdropping attacks. Another relevant threat to trustworthiness is jamming attacks. Different jamming 
models have been designed and their impact have been evaluated as a precursor to designing effective 
mitigation strategies. Additionally, blind jammer localization without using any prior information about its 
location or the environment have been investigated. Finally, security and privacy aspects of a general cellular 
JCAS system, including UE-related security aspects, which is beyond the existing ones connected to 
communication systems, are analysed. 

PoC and simulation tools: Through extensive research and proof-of-concept implementations, significant 
advancements are outlined in physical layer modelling, AI-native air interfaces, and joint JCAS technologies. 
The findings and methodologies presented not only demonstrate the feasibility and efficiency of these 
innovations but also set a foundation for future explorations in 6G technology. Emphasizing the importance of 
energy efficiency, safety, and cross-vendor cooperation, this report highlights the collaborative efforts 
necessary to realize the full potential of 6G. Through the exploration of the 6G physical layer link modelling, 
the report highlights the development of simulation tools that enhance PHY schemes such as D-MIMO and 
beamforming, crucial for optimizing performance in the challenging mmWave and sub-THz bands. It also 
explores flexible modulation and transceiver design, showcasing the integration of AI-native air interfaces to 
improve efficiency and adaptability in communication protocols. The efforts in JCAS and the subsequent 
analysis of power consumption patterns reflect a commitment to multi-functionality and sustainability within 
future networks. Moreover, the report addresses electromagnetic filed (EMF) assessment methods, allowing 
for evaluation of environmental EMF exposure levels from advanced MIMO systems. The detailed channel 
measurement data and models provide a foundational resource for validating the simulations and theoretical 
frameworks that underpin 6G development. 

Next steps: Building on this report, future efforts will focus on expanding and refining the radio design 
framework and further development and assessment of the selected enablers. Emphasis will be placed on 
clustering similar topics to generalize solutions and enhance collaboration across diverse research groups. This 
initiative will also involve harmonizing terminologies to ensure clear and consistent communication in the 
project ecosystem. Comprehensive assessments are planned, which will include incorporating multiple 
performance metrics to thoroughly assess the advantages and limitations of different approaches, as well as 
evaluating multiple components concurrently, such as integrating more hardware models, and simulating the 
impact of multiple elements concurrently. Moreover, the focus will shift from independently evaluating 
individual elements to exploring their interactions and interconnections for better understanding of the system 
behaviour in a more integrated context. Additionally, efforts will be made to improve interactions with other 
layers in the 6G blueprint by advancing collaboration with other work packages, which is essential for the 
integration of innovative radio solution within the broader 6G end-to-end system design. Work on PoCs will 
continue, aiming at evaluating the developed solutions under more realistic assumptions.   
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Appendix 
A.1 Channel modelling  
A.1.1 3GPP channel model 

Table A.1-1: Large-scale parameters. 

Parameter 
Entrance hall Indoor – Office [38.901 Residential UMi-street canyon [38.901] 

LoS NLoS LoS NLoS LoS NLoS LoS NLoS 

DS 

lgDS = logJK(DS/1s) 

𝜇LMN" -7.84 -7.62 -7.71 -7.78 -7.74 -7.67 -7.66 -7.35 

𝜎LMN" 0.12 0.19 0.18 0.27 0.42 0.45 0.38 0.62 

ASD 

lgASD = logJK(ASD/1°) 

𝜇LMO"N 1.09 1.32 1.6 1.62 0.89 0.76 1.1 1.03 

𝜎LMO"N 0.27 0.21 0.18 0.25 0.37 0.4 0.41 0.57 

ASA 

lgAS𝐴 = logJK(ASA/1°) 

𝜇LMO"O 1.39 1.54 1.37 1.63 0.99 1.32 1.56 1.64 

𝜎LMO"O 0.17 0.19 0.38 0.32 0.42 0.33 0.31 0.41 

ZSD 

lgZOD = logJK(ZOD/1°) 

𝜇LMP"N 0.36 0.53 -0.85 1.08 0.04 0.14 [38.901] [38.901] 

𝜎LMP"N 0.27 0.25 0.58 0.36 0.3 0.36 [38.901] [38.901] 

ZSA 

lgZSA = logJK(ZSA/1°) 

𝜇LMP"O 0.72 0.83 0.88 1.06 0.3 0.48 0.51 0.83 

𝜎LMP"O 0.33 0.33 0.18 0.55 0.32 0.41 0.25 0.26 

SF (dB) 𝜎LM"Q 0.9 7.3 3 8 1.1 8.2 4 7.8 

K-factor (dB) 
𝜇R 6.2 NA 7 NA 7.8 NA 9 NA 

𝜎R 5.4 NA 4 NA 7.9 NA 5 NA 

Path loss 
𝛼 (dB) 73.6 74.4 75.4 70.9 79.2 52.5 75.4 68.2 

𝛽 2.1 2.8 1.7 3.8 1.7 3.9 2.1 3.5 

 
Table A.1-2: Small-scale parameters. 

Parameter 
Entrance hall Indoor – Office [38.901] Residential UMi-street canyon [38.901] 

LoS NLoS LoS NLoS LoS NLoS LoS NLoS 

Delay scaling parameter 𝑟S 4.1 2.2 3.6 3 5.3 3.3 3 2.1 

Number of Clusters 𝑁T 𝜇U! 24 18 15 19 6 3 12 19 

Number of rays per cluster 𝑀 𝜇V 2.3 2.3 20 20 1.8 2.1 20 20 
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Cluster DS (ns) CDS 𝜇WN" 4 3.7 3.91 3.91 2.1 1.7 5 11 

Cluster ASD (°) CASD 𝜇WO"N 2.3 2.1 5 5 1.4 1.2 3 10 

Cluster ASA (°) CASA 𝜇WO"O 3.2 3 8 11 2.8 1.4 17 22 

Cluster ZSD (°) CZSD 𝜇WP"N 1.4 1.1 0.1 4.5 0.6 0.5 [38.901] [38.901] 

Cluster ZSA (°) CZSA 𝜇WP"O 2.5 2 9 9 1.2 1.1 7 7 

Per cluster shadowing (dB) 𝜁 𝜇X 10.2 6.1 6 3 8 6.4 3 3 

 
Table A.1-3: Cross-correlation parameters. 

Parameter 1 Parameter 2 
Entrance hall Indoor – office [38.901] Residential UMi-street canyon [38.901] 

LoS NLoS LoS NLoS LoS NLoS LoS NLoS 

ASD DS 0.2 0.3 0.6 0.4 0.4 0.3 0.5 0 

ASA DS 0.5 0.4 0.8 0 0.3 0.6 0.8 0.4 

ASA SF -0.2 0.4 -0.5 -0.4 -0.3 0.4 -0.4 -0.4 

ASD SF -0.7 0.3 -0.4 0 -0.2 0 -0.5 0 

DS SF -0.2 0.4 -0.8 -0.5 0.3 0.2 -0.4 -0.7 

ASD ASA 0.3 0.1 0.4 0 0.2 0.1 0.4 0 

ASD K -0.5 NA 0 NA -0.2 NA -0.2 NA 

ASA K -0.6 NA 0 NA -0.2 NA -0.3 NA 

DS K -0.2 NA -0.5 NA 0.1 NA -0.7 NA 

SF K 0.6 NA 0.5 NA 0.7 NA 0.5 NA 

ZSD SF -0.5 0.2 0.2 0 -0.5 0.4 0 0 

ZSA SF -0.4 0.2 0.3 0 -0.2 -0.1 0 0 

ZSD K -0.7 NA 0 NA -0.7 NA 0 NA 

ZSA K -0.9 NA 0.1 NA -0.5 NA 0 NA 

ZSD DS -0.1 0.3 0.1 -0.3 0.2 0.2 0 -0.5 

ZSA DS 0.2 0.2 0.2 -0.1 0 0 0.2 0 

ZSD ASD 0.5 0.5 0.5 0.4 0.6 0.2 0.5 0.5 

ZSA ASD 0.3 0.3 0 0.2 0.2 -0.1 0.3 0.5 

ZSD ASA 0.5 0.2 0 -0.1 0.3 0.5 0 0 

ZSA ASA 0.6 0.5 0.5 0.4 0.3 0.4 0 0.2 

ZSD ZSA 0.7 0.6 0 0.4 0.4 0.4 0 0 

 

A.1.2 Coverage analysis at THz frequencies 
System model for coverage analysis at THz frequencies: While both Line-of-Sight (LoS) and non-LoS 
(NLoS) multipath components are significant in mmWave, at THz frequencies the NLoS paths can be 
considered insignificant [ECM+22]. 

At THz frequencies, the path loss is characterized by the spreading loss and the molecular absorption loss. 
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The spreading loss accounts for the attenuation due to the expansion of a wave as it propagates through the 
medium, i.e., the free-space path loss [JA11]. 

The molecular absorption loss also determines the available transmission bandwidth, which drastically shrinks 
with distance. For communication distances below one metre, where the number of molecules found along the 
path is small, the THz band behaves as a single transmission window THz wide. As the transmission distance 
increases, molecular absorption defines multiple transmission windows, each of them tens or hundreds of GHz 
wide. The bandwidth of each individual transmission window shrinks with the transmission distance. 
Therefore, as the distance increases (i.e., the number of absorbing molecules augments), not only the 
absorption loss increases, but also the transmission windows shrink [ECM+22], [HJ19], [SAN21]. 

Since water vapor (H2O) dominates the absorption losses at high frequencies [SAN21], [JA11], the frequency-
dependent molecular absorption coefficient k(fc) is considered for H2O, leading to the value of 0,045 m-1 at 
600 GHz, retrieved from [JA11]. The frequency of 600 GHz has been selected considering the availability of 
the above-mentioned transmission windows, the values of k(fc) as a function of frequency and the selection of 
a frequency value still in the lower range of the THz frequencies, looking at feasibility aspects in terms of 
future early stages of technology availability. 

The coverage evaluation has been performed for the same path loss values for both mmWave and THz 
frequencies, in a range of 110 – 130 dB, which are achievable for mmWave at the upper limits of distance and 
frequency in the range of validity of (3-1) and (3-2). 

Mathematical model for coverage analysis at THz frequencies: 

The involved parameters with their definitions and relevant references are listed hereafter:  

PL Path loss [38.901], [M.2412-0], [ECM+22], [SAN21], [HJ19], [JA11] 

d2D 2D distance between BS and UE [38.901], [M.2412-0] 

d3D 3D distance between BS and UE [38.901], [M.2412-0] 

fc centre frequency [38.901], [M.2412-0] 

k(fc) frequency-dependent molecular absorption coefficient for H2O (0,045 m-1 at 600 GHz) [JA11] 

e Euler’s number (2,718281828459) 

c light speed in free space (3x108 m/s) 

hBS BS antenna height (3 m) [M.2412-0] 

hUE UE antenna height (1.5 m) [M.2412-0] 

Assumptions for coverage analysis at THz frequencies: 

• It is considered a LoS scenario without multipath effects, with ideal isotropic antennas at both 
transmitting and receiving side. 

• Path loss evaluation at 100 GHz is evaluated from 3GPP [38.901] and ITU-R [M.2412-0] channel 
modelling via (3-1) and (3-2).  

• Path loss evaluation at THz frequencies is evaluated starting from [ECM+22], [SAN21], [HJ19], 
[JA11] via (3-3). 

Results evaluation for coverage analysis at THz frequencies: For mmWave InH – Office – LoS scenario, 
from (3-1) at the upper limits of d3D = 150 m and fc = 100 GHz, the resulting path loss is equal to 110,05 dB. 

For THz – LoS scenario, from (3-3) at fc = 600 GHz, the same path loss (109,96 dB) is achieved at d3D = 10 
m. In this case: 

• Molecular absorption loss (600 GHz, 10 m) = 1,954 dB with k(fc) = 0,045 m-1 (molecular absorption 
coefficient for H2O) 

• Spreading loss (600 GHz, 10 m) = 108,005 dB 

Therefore, almost all the path loss is governed by the spreading loss, with a negligible contribution coming 
from the molecular absorption loss. 
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It is worthwhile noting that: 

• applying (3-1) instead of (3-3) at fc = 600 GHz (and consequently out of the range of validity of (3-1)) 
and at d3D = 10 m would have led to a path loss of 105,26 dB instead of 109,96 dB, with a reduction 
of 4.7 dB, i.e. a 4.3% reduction error in path loss evaluation; 

• applying (3-2) instead of (3-3) at fc = 600 GHz (and consequently out of the range of validity of (3-2)) 
and at d3D = 10 m would have led to a path loss of 106,12 dB instead of 109,96 dB, with a reduction 
of 3.84 dB, i.e. a 3.5% reduction error in path loss evaluation.  

For mmWave InF – LoS scenario, from (3-2) at the upper limits of d3D = 600 m and fc = 100 GHz, the resulting 
path loss is equal to 129,57 dB. 

For THz – LoS scenario, from (3-3) at fc = 600 GHz, the same path loss (129,86 dB) is achieved at d3D = 45 
m. In this case: 

• Molecular absorption loss (600 GHz, 45 m) = 8,794 dB with k(fc) = 0,045 m-1 (molecular absorption 
coefficient for H2O) 

• Spreading loss (600 GHz, 45 m) = 121,069 dB 

Therefore, the contribution coming from the molecular absorption loss accounts for nearly 7% of the overall 
path loss. 

It is worthwhile noting that: 

• applying (3-1) instead of (3-3) at fc = 600 GHz (and consequently out of the range of validity of (3-1)) 
and at d3D = 45 m would have led to a path loss of 116,56 dB instead of 129,86 dB, with a reduction 
of 13.3 dB, i.e. a 10.2% reduction error in path loss evaluation; 

• applying (3-2) instead of (3-3) at fc = 600 GHz (and consequently out of the range of validity of (3-2)) 
and at d3D = 45 m would have led to a path loss of 120,17 dB instead of 129,86 dB, with a reduction 
of 9.69 dB, i.e. a 7.5% reduction error in path loss evaluation. 

For THz – LoS scenario, from (3-3) at fc = 600 GHz and d3D = 100 m, the resulting path loss is equal to 147,55 
dB. In this case: 

• Molecular absorption loss (600 GHz, 100 m) = 19,543 dB with k(fc) = 0,045 m-1 (molecular absorption 
coefficient for H2O) 

• Spreading loss (600 GHz, 100 m) = 128,005 dB 

Therefore, the contribution coming from the molecular absorption loss accounts for about 13% of the overall 
path loss. 

It is worthwhile noting that: 

• applying (3-1) instead of (3-3) at fc = 600 GHz (and consequently out of the range of validity of (3-1)) 
and at d3D = 100 m would have led to a path loss of 122,56 dB instead of 147,55 dB, with a reduction 
of 25 dB, i.e. a 16.9% reduction error in path loss evaluation; 

• applying (3-2) instead of (3-3) at fc = 600 GHz (and consequently out of the range of validity of (3-2)) 
and at d3D = 100 m would have led to a path loss of 127,62 dB instead of 147,55 dB, with a reduction 
of 19.93 dB, i.e. a 13.5% reduction error in path loss evaluation. 

The path loss of 147,55 dB is not achievable even at the upper limits of d3D = 600 m and fc = 100 GHz for 
mmWave InF – LoS scenario, from (3-2), where the path loss only achieves 129,57 dB and consequently it is 
not possible to perform a coverage reduction evaluation in such a case. 

As expected, the higher d3D the higher the error in path loss evaluation when applying (3-1) and (3-2) out of 
the range of their validity in terms of fc, instead of applying (3-3). 

 

A.2 MIMO transmission  
A.2.1 D-MIMO with Rotary ULAs  
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The simulation parameters are listed in Table A.2-4. A spatially correlated Rician fading channel model 
[ÖBL19] is considered, where the path-loss coefficients are modelled according to a channel model validated 
by 3GPP for indoor industrial scenarios [R1-1813177].  Perfect hardware and perfect synchronization are 
assumed. Still, some practical limitations would be the finite angular resolution, angular speed and power 
consumption of the servo motor, and imperfect synchronization among APs. 

 
Table A.2-4: Simulation Parameters. 

Parameter Notation Value 

Total Number of Antenna Elements M 16 

Number of APs Q [1,2,4,8] 

Number of active devices in each timeslot K 16 

Length of the side of square coverage area l 100 m 

Uplink Transmit power p 100 mW 

Noise power 𝜎. -92 dBm 

Noise figure 𝑁� 9 dB 

Height of the APs ℎ�~ 12 m 

Height of the devices ℎ�~ 1.5 m 

Carrier frequency 𝑓� 3.5 GHz 

Signal bandwidth B 20 MHz 

 

A.2.2 Distributed-MIMO with analogue fronthaul 
Experimental setup: Figure A.2-1 displays the block diagram of the experimental setup. Within this 
configuration, TRxP 1 uses an analogue radio over fibre (ARoF) fronthaul link, whereas TRxP 2 fronthaul 
utilizes a 1.2-meter coaxial cable. These tests use a 10 MHz orthogonal frequency-division multiplexing 
(OFDM) signal with a subcarrier spacing (SCS) of 30 kHz, consisting of 24 resource blocks (RBs), and 
operating at a carrier frequency of 622 MHz, i.e., New Radio (NR) band n71. 

  
Figure A.2-1: Experimental setup block diagram. 

To send the ARoF signal to TRxP 1, an external cavity laser (ECL) operating at a wavelength of 1550.9 nm, 
with a linewidth below 100 kHz, and providing an output power of 12 dBm, is employed as the light source. 
The generation of OFDM analogue signals at the RF carrier is accomplished using an arbitrary waveform 
generator (AWG) with a sampling frequency of 50 GSa/s. These analogue signals modulate the output of the 
ECL through a single-drive Mach-Zehnder modulator (MZM), producing ARoF signals by operating the MZM 
close to the quadrature point. A polarization controller (PC) is utilized to adjust the light polarization at the 
MZM input. The output from the MZM is transmitted through standard single-mode fibre (SSMF), and the 
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received optical power is adjusted using a variable optical attenuator (VOA) before optical heterodyne 
detection in a photodetector (PD) with an analogue bandwidth of 9 GHz. After photodetection, the signal is 
amplified by an electrical amplifier (EA) with a gain of 22 dB and a noise figure (NF) of 5.5 dB. Similarly, 
the electrical signal transmitted to TRxP 2 is amplified by an EA featuring a gain of 30 dB and a NF of 6 dB. 
For wireless transmission, multiband antennas with a peak gain of about 3 dBi were utilized. The chosen EAs 
offer comparable performance for both TRxPs, despite their different fronthaul implementations. 

Following wireless transmission, the received signal is filtered with a narrow bandpass filter (BPF) with a 
central frequency of 622 MHz. For coherent joint transmission (CJT) tests, there's an optional utilization of an 
electrical attenuator (Att) preceding the BPF. This is done to regulate the received signal power, ensuring 
validation of the CJT power and diversity gains. Additionally, it's important to note that the setup's geometry 
is adjusted to approximate flat fading conditions for the received signals from both TRxPs. However, 
maintaining the same distance between the TRxPs and the receiver antenna was difficult. As a result, the 
distance between the receiver antenna and TRxP 1 is 1 meter, while it's 1.3 meters for TRxP 2. Moreover, the 
spacing between the antennas of the TRxPs is around 3 wavelengths, approximately 1.5 meters at a carrier 
frequency of 622 MHz. Subsequently, the received signals are stored in a digital storage oscilloscope (DSO) 
for further offline signal processing. Figure A.2-2 shows a photo of the experimental setup. 

 
Figure A.2-2: Experimental setup photo. 

Following analogue-to-digital conversion, initially a digital Costas loop is used for carrier recovery, followed 
by digital down conversion (DDC) to bring the signal to baseband. Then, after the removal of cyclic prefix 
(CP) and conversion from time domain to frequency domain using the fast Fourier transform (FFT), a zero-
forcing (ZF) equalizer is calculated. The coefficients of the equalizer are computed, averaged, and interpolated, 
following the methodology outlined by standardization bodies [38.104]. 

In channel estimation, the receiver performs the channel estimation and provides explicit channel estimation 
information to the transmitter. The least squares estimator (LSE) is employed to derive the channel estimate. 
To compute the estimates of both TRxPs, the same signal is separately transmitted using each TRxP. The 
instantaneous channel estimate in the frequency domain per subcarrier is determined as follows: 

𝐇; = 𝐘𝐗½�𝐗𝐗½�21, (A.2-1) 

where X stands for a diagonal matrix containing known symbol sequences, Y represents the sequences aligned 
in time subsequent to wireless transmission, and 𝐇;  denotes the channel estimate. It's important to note that 𝐇;  
comprises the amplitude and phase alterations arising from the wireless channel, analogue front-ends, and 
fronthaul links. Subsequently, to implement CJT, only the signal from TRxP 2 is aligned in time and precoded. 
The precoder is computed using the complex ratio 𝐡= 𝟏/𝐡= 𝟐 , where 𝐡= 𝟏  and  𝐡= 𝟐  represent the vector channel 
estimates of subcarriers for TRxP 1 and TRxP 2, respectively. This ensures that the OFDM signal transmitted 
by TRxP 2 is both time and phase aligned with the signal transmitted by TRxP 1. 
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A.2.3 MU-MIMO optimization in diverse device scenarios 
In diverse devices scenarios (see Figure A.2-3) the full optimization of all DL MU-MIMO scheme parameters 
(e.g., precoding, channel estimation, feedback, etc.) may be prohibitively difficult and computationally 
intensive. This work targets to investigate intelligent optimization methods and trade-offs to deliver required 
performance but also reduce the computational cost (and related energy consumption) on the Base Station and 
UE sides. A possible UL connection with the DL optimization is also discussed. The focus is on TDD mode 
of operation.  

 
Figure A.2-3: MU-MIMO optimization of the DL in diverse devices scenario. 

Main part of the development in this work so far, has been the conceptional construction of the flexible 
“effective antennas” concept, a tool of dimensionality reduction at arrays, and a preliminary simulation of the 
interference rejection scenario. The term Effective Antenna (EA), for RX or TX antenna array, defines a 
set of linear combinations over RX or TX array. The purpose of such definition is to have EAs “clean” from 
interference, that can be then the aim for the DL precoder, instead of the physical antennas. 

In the following, “Effective” objects are denoted by a bar over the respective parameter. For example, for the 
RX array of size 𝑁¤(B), a weighted combination of the received signals 𝒓(�) is denoted as (see Figure A.2-4): 

�̅�(�)(n) = 𝒘(�)=
{ 𝒓(�),      dim𝒘(�)= = dim𝒓(�) = 𝑁¤(�) × 1. (A.2-2) 

Every EA combines the components of the received signals vector from the full set of RX antennas into a 
complex-valued scalar. This combination acts as if a single effective RX antenna (it will be observed that it 
has however more properties than 1 physical antenna). Here 𝑛 is the index of a specific weight row vector 
(specific “equalizer”). Each combination defines an Effective Antenna (EA). Only effective antennas (and not 
all physical antennas) will be then clean from the interference and be the aim for the DL precoder. 

 
Figure A.2-4: Illustration of the UE RX Effective Antenna concept. 

The above framework should help the 6G MU-MIMO systems to overcome some basic challenges: 
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• Incorporation of devices with large number of antenna elements  
o especially for total number of all UE devices RX antennas 𝑁¤ ≡ ∑ 𝑁¤(�)

Q[
��1  being larger than 

BS TX antennas:  𝑁¤ > 𝑁@ , or 𝑁¤ ≫ 𝑁@ 
o and escape their pollution by multi-user interference.   

• Extension of the range of the communication 
• Reduction of the response and adaptation times (especially for large UE arrays) 
• Interference rejection (e.g., from other cells and in the small cells)  
• Channel Ageing problems for DL precoder construction 

Array dimensionality reduction via Effective Antennas: In a MU-MIMO system with large total number of 
UEs RX antennas, they cannot be all discriminated by BS DL ZF precoder if 𝑁¤ > 𝑁@. This may lead to 
interference noise over UEs arrays. However, using EAs concept, the discrimination becomes possible. The 
dimensionality reduction has been introduced in 2004 [SSH04] as “Coordinated Transmit-Receive 
Processing”. In that work, it was assumed that the number of EAs is equal to the number of the information 
layers per UE. However, in the presented EA concept, the number of EAs can be also smaller or larger (e.g., 
due to incorporation of the interference reduction). A smaller number of EAs can be used in the overloaded 
mode (see e.g. [WPM07], [HH17]): the mode yet to be researched. 

The EAs idea is illustrated below via the projection method, considering a single layer transmission to all users. 
The RX equation in that case is: 

𝒓(�) = 𝑯(�)𝑷𝒔 + 𝒏(�), (A.2-3) 

where 𝒓(�) is the received vector over the full RX array, 𝑯(�) is the physical channel matrix for user #	𝑢, 𝑷 is 
the precoder matrix for all 𝑁?	users, 𝒔 denote the symbols for all users, and 𝒏(�) is the noise vector for user #	
𝑢	at its RX physical array. Every user 𝑢ϵ{1:𝑁�} is equipped with 𝑁¤(�) RX antennas and treats its received 
signal vector 𝒓(�)  , dim𝒓(�) = 𝑁¤(B) × 1, with an “equalizer” row vector 𝒘(�)

{  , dim𝒘(�)
{ = 1 × 𝑁¤(B)  as 

𝒘(�)
{ 𝑯(�). The output of this projection is a 1-layer scalar reduced dimension signal: 

�̅�(�) = 𝒘(�)
{ 𝒓(�) = 𝒘(�)

{ 𝑯(�)𝑷𝒔 + 𝑛(�). (A.2-4) 

Then, the Base Station may construct the zero-forcing solution from the modified channel:  

�̀� = a
𝒘(1)
{ 𝑯(1)
⋮

𝒘(Q[)
{ 𝑯(Q[)

c,   dim �̀� = 𝑁? × 𝑁@ ,  dim𝒘(�)
{ 𝑯(�) = 1 × 𝑁@ (A.2-5) 

This allows to construct a DL precoder (construction of such precoder is discussed, e.g., in [PS08] and 
[SPS+04]).  

𝑷 = pinv(�̀�) ∗𝑫 (A.2-6) 

Note that a precoder can be linear (as currently specified for use in the 4G and 5G systems) or nonlinear as it 
is discussed in the presented references. Here, the nonlinear precoders will not be discussed but an interesting 
possibility of mixing linear and nonlinear precoding can be noted (see e.g. [CVR19]). A possible better channel 
estimation accuracy due to the usage of EAs (or due to the “decoding from data” discussed further) may 
facilitate construction of nonlinear precoders which are known to be sensible to the channel errors. 

𝑷 = pinv(�̀�) ∗𝑫 (A.2-7) 

In general, the total �̀�¤(�) rows of the equalizer vectors can be stacked into an equalizer matrix 𝑮(�): 

𝑮(�) = a
𝒘(�)1
{

…
𝒘(�)Q¿A(B)
{

c (A.2-8) 

Then, this leads to: 
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𝒓e(�) = 𝑮(�) ∗ 𝒓(�) ,   dim𝑮(�)	 = �̀�¤(�) × 𝑁¤(�) ,  dim𝒓e(�) = �̀�¤(�) × 1 (A.2-9) 

The EAs shrink the full channel represented by the channel matrix 𝑯(�) with 𝑁¤(�) rows (each having length 
of 𝑁@ of the BS array) and of dimension  dim𝑯(�) = 𝑁¤(�) × 𝑁@ , into the transformed channel with reduced 
number of rows: 

�̀�(�) = 𝑮(�) ∗𝑯(�),    dim �̀�(�)	 = �̀�¤(�) × 𝑁@ , (A.2-10) 

Each row in �̀�(�) represents channel from BS antennas to each UE RX EA: 

𝒉(�)={ ≡ �̀�(�)(𝑛, 1:𝑁@) = 𝒘(�)=
{ 𝑯(�) ,   𝑛 = 1: �̀�¤(�)  ,    dim𝒉(�)={ = 1 × 𝑁@ (A.2-11) 

In Figure A.2-5, it is shown show that estimation of channel realised at any set of UE RX EAs can be delivered 
to the BS in the TDD reciprocity mode via uplink reference signal such as, e.g., the sounding reference signal 
(SRS) transmission used in 4G and 5G.  

 
Figure A.2-5: SRS transmission to deliver channel 𝒉(𝒖)𝒏𝑯 ≡ 𝒘(𝒖)𝒏

𝑯 𝑯(𝒖) corresponding EAs with index “𝒏”.   

As a further ramification of the EAs approach, every UE can suggest to BS an enlarged set of “candidate” EAs, 
and BS may choose and indicate which EAs to use. Note that UE does not know the EAs of the other users 
(e.g., various EAs between different UEs can be highly correlated), hence, choice from the BS with wider 
system view can be beneficial.  

Now, matrix 𝑮(�) can be different for each user and its dimensionality reduction can be done in several, 𝑁¹(�), 
steps:  

𝑮(�) = ∏ 𝑮(�)
(=)Q\(B)

=�1 , (A.2-12) 

where every matrix 𝑮(�)
(=) can belong to possibly different “alphabet” sets (general or defined by parameters 

from a predefined set, e.g., rows of a pre-defined transform) which also can realize different architectures (e.g., 
fully digital, mix of digital and analogue, fully analogue such as phase shifters having quantized values).  

For example, in case of two-step dimensionality reduction: 

𝑮(�) = 𝑮(�)
(1)𝑮(�)

(.) , 

dim𝑮(�)
(1) 	 = �̀�¤(�) × 𝑁(�)

(J�&26ÀJÁ!D�ºÂ	.),          dim𝑮(�)
(.) 	 = 𝑁(�)

(J�&26ÀJÁ!D�ºÂ	.) × 𝑁¤(�) 
(A.2-13) 

In that case, the “outer” element, 𝑮(�)
(.) , performs the larger dimensionality reduction and can be updated (using 

the SRS) less frequently. Even if the channel slightly changes, 𝑮(�)
(.)  will still focus the power onto the EAs, 

UE(u)
Base

Station

H(u)(1,1)

H(u)(NR(u),1)

H(u)(1,NT)

Channels Matrix

H(u)(NR(u),NT)

s

s

s is an SRS symbols

𝒘(𝑢)𝑛
𝐻 𝑯(𝑢) ∗ 𝑠 = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙. 𝑣𝑒𝑐. 𝑜𝑓. 𝑛𝑡ℎ 	𝐸𝐴  

8 𝑤(𝑢)𝑛
∗ (𝑘)

𝑁𝑅(𝑢)

𝑘=1

𝐻(𝑢)(𝑘, 1) ∗ 𝑠 = 𝐻?(𝑢)(𝑛, 1) ∗ 𝑠 

𝑤(𝑢)𝑛
∗ (1) 

𝑤(𝑢)𝑛
∗ @𝑁𝑅(𝑢)A 

Effective 
Antenna  #n
NR weights

over NT gNB antennas

e.g. n=1:2, NR=16, NT=64
Effective Antennas (EAs) are defined by 
weights w(1) and w(2) having length 16
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thus performing more precise channel estimation.  On the other hand, having the “inner” element, 𝑮(�)
(1) , 

adjusting more frequently, according to the changing channel 𝑯(�), allows exact ZF to be performed. Better 
effective channel estimation accuracy allows faster channel acquisition (with no or few repetitions).  

The “fine” structured matrix 𝑮(�)
(1)  can be fixed per smaller sets of resources (e.g., per RE) and the “rough” 

matrix 𝑮(�)
(.) , can be defined per larger sets of resources, e.g., per sub-band, per whole frequency band, or per 

frequency regions with quasi-static channel (see Figure A.2-6). 

 

 

 

 

 

 

 

Figure A.2-6: Possible allocations of the “fine” 𝑮(𝒖)
(𝟏)  and the “rough” 𝑮(𝒖)

(𝟐)  matrices along the frequency axis. 

Considering for example, the following sizes: 

𝑁¤(�) = 2,  𝑁(�)
(J�&26ÀJÁ!D�ºÂ	.) = 4,  𝑁¤(�) = 64 (A.2-14) 

the decomposition process reduces 64 physical antennas to 2 EAs in two steps. These two EAs can serve 1 or 
2 information layers. For reduction performed in two steps, the relation 𝒓e(�) = 𝑮(�) ∗ 𝒓(�) can be represented 
as in Figure A.2-7, also considering a design option of mixed digital and analogue steps. Note that such 
architecture can make the array be cost effective and simpler, and the analogue part can belong to a predefined 
alphabet efficient for the implementation. Of course, other design options are possible, including twos steps 
that are only digital or only analogue. 

 

  

 

 

 

                            

                              digital step              analogue step 

 
Figure A.2-7: Example of two-step processing for the mixed architecture arrays having analogue and digital 

hardware elements. 

A very important aspect of the proposed methodology is that the UE array may incorporate the interference 
rejection mechanisms into the UE RX EAs construction to treat the noise vector term by a linear transform 
matrix 𝑻(�) as:  

𝒓(�)
(&ºJ�Ã�ÀJ) ≡ 𝑻(�)𝒓(�) = 𝑻(�)𝑯(�)𝑷𝒔 + 𝑻(�)𝒏(�) = 𝑯(�)

(&ºJ�Ã�ÀJ)𝑷𝒔 + 𝒏(�)
(&ºJ�Ã�ÀJ) (A.2-15) 

Thus, the interference rejection can be inserted into the EAs by adjusting EAs toward the modified channel. 
For example, the EAs can be constructed as:  

G(1) G(1) G(1) 

G(2) 

 

G(1) G(1) 

G(2) 

 

G(1) 

frequency axis 

𝑮(�)
(.)  

4 × 64 

𝑮(�)
(1)  

2 × 1 

 

𝒓e(�)
(J�'�DBn) 

4 × 1 

 

𝒓e(�) 

2 × 1 

𝒓(�) 

64 × 1 
A
D
C 
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𝑮(�)	 = h
𝒖(�)1
(&ºJ�Ã�ÀJ){

…
𝒖(�)Q¿A(B)
(&ºJ�Ã�ÀJ){

i (A.2-16) 

from the best (corresponding to the largest values of the 𝜎(�)u
(&ºJ�Ã�ÀJ)) hermitically conjugated left eigenvectors 

𝒖u(�)
(&ºJ�Ã�ÀJ){  of the SVD decomposition of the modified physical channel 𝑯(�)

(&ºJ�Ã�ÀJ) =

∑ 𝜎(�)u
(&ºJ�Ã�ÀJ)𝒖(�)u

(&ºJ�Ã�ÀJ)𝒗(�)u
(&ºJ�Ã�ÀJ){&�Â	(QA(B),*])

u�1 . One may note that the celebrated [T99] solution is for the 
white noise; with interference present, it is not optimal. After pre-whitening the coloured noise becomes white 
again, but the [T99] SVD decomposition is to be applied above the modified channel.  

The multi-step approach for dimensionality reduction allows more flexible construction with optional 
interference rejections at every step (i.e., for no rejection, a 𝑻(�)

(=)  will be a unit matrix): 

𝑮(�) = ∏ 𝑮(�)
(=)Q\(B)

=�1 𝑻(�)
(=), 

e.g., 𝑮(�) = 𝑮(�)
(1)𝑻(�)

(1)𝑮(�)
(.)   ,  (2-step reduction with no rejection at outer step) 

(A.2-17) 

As visualised in Figure A.2-8, the outer dimensionality reduction can act similarly to the physical channel 
matched filter (e.g., based on the best SVD 𝑁(�)

(J�&26ÀJÁ!D�ºÂ	.) components) while the interference rejection 
then applied at the inner step can be simpler learned (e.g., due to smaller size of whitening matrixes).  

      Rows of EAs                                                       interf.Reject.Matrix  

                                                                  = 

 

                         2 × 64                                  2 × 4           4 × 4                      	4 × 64 

Figure A.2-8: Example of interference rejection at the intermediate dimensionality reduction stage. 

An important observation is that since the multi-user interference is absent on the EAs, then one can 
alternatively use 𝑮(�)

(.)  to be the actual EAs. Thus, considering the example above (no rejection at outer step), 
such approach allows to treat interference rejection and EAs independently (Figure A.2-9). Then, the number 
of EAs is usually larger than the number of the information layers and is determined by the needed size of the 
array to reject the present interference. 

                                                                           interf.Reject.Matrix                    Rows of EAs 

                                                                 = 

 

                         2 × 64                                  2 × 4           4 × 4                      	4 × 64 

Figure A.2-9: Example of independent interference rejection and EAs construction. 

In that case, the number of EAs is usually larger than the number of the info layers and is determined by the 
needed size of the array to reject the present interference. The above example and observation show an essential 
“breezing” construction. After the interference is learned, the number of EAs can be reduced (from 4 to 2 in 
the example), to, e.g., allow more users to enter MU-MIMO. When the interference (or the channel) changes 
significantly, the EAs are to be re-learned and the structure returns to a larger size (to 4 in the example). If 4x4 

𝑮(�)
(.)  

 

𝑮(�)
(1)  

 

𝑻(�)
(1)  

 

𝑮(�) 

𝑮(�)
(.)  

 

𝑮(�)
(1)  

 

𝑻(�)
(1)  

 

𝑮(�) 



Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 182 / 218 

 

interference rejector is not enough, then the sizes of 𝑻(�)
(1)  and 𝑮(�)

(.)  are to be further increased (e.g., to 6 or 8 
EAs). 

It is crucial again here to stress the deep difference between 1 physical antenna and 1 EAs: even a single EA 
can reject the interference, while single physical antenna cannot. Treatment of the interference can be of high 
importance in 6G due to large density of the UE devices and small size of the cells. 

Optimized dimensionality reduction - Learning channel from decoded data: The concept of EAs can of 
course be applied towards the transmit direction, i.e., to construct UE TX EAs. However, the UE RX EAs 
(performing the DL reception) and UE TX EAs (for UL transmission) can be different, e.g., because the RX 
EAs may need to reject the interference. When the TX/RX EA sets are constrained to be the same, EAs 
construction is a joint optimization. That case allows to apply the interesting and powerful concepts of 
“learning channel from the decoded data” where BS (see Figure A.2-10). 

• decodes the UL transmissions (by means of FEC) from the UE TX EAs 
• uses the abundant decoded data (from data signals or pilots if present, with or without errors, checked by 

CRC after the FEC) to combine back symbols from the decoded bits (via Rate Matching machinery) and 
decode the channel matrices by using frequency/time averaging and pinv (or its regularisations and 
generalizations with forgetting weights).  

• then, using this most recent estimated channel (deduced from the UL decoded transmissions), constructs 
the MU-MIMO DL precoder. 

 
Figure A.2-10: Optimized dimensionality approach including UL decoding usage (from all UEs) to construct the 

BS DL precoder and perform DL transmission. Example for single TX/RX EA UEs. 

The DL precoder at the BS is constructed from the estimated channel: 

𝑷Q]×Q^_^`a = pinv º�𝑯;Q]×Q^_^`a�
@»	𝑫Q^_^`a×Q^_^`a (A.2-18) 

where estimation of the channel matrix from already decoded by FEC data (for MU-MIMO) can be done as: 

𝒓 = ∑ 𝒉=
Q^_^`a
=�1 ∗ 𝑠= + 𝒏 = 𝑯𝒔 + 𝒏	, 

dim𝒓 = 𝑁@ × 1,  dim𝒏 = 𝑁@ × 1,  dim𝒉= = 𝑁@ × 1, dim𝑯 = 𝑁@ × 𝑁DºDBn , 
dim𝒔 = 𝑁DºDBn × 1 

(A.2-19) 

Above, 𝑵DºDBn is the total number of the spatial streams from all users (e.g., for 3 users with 4 spatial streams 
each, 𝑁DºDBn = 3 ∗ 4 = 12). 

Considering that 𝑁� total REs surrounding the RE at the estimation (with channel assumed approximately 
constant) are used for channel estimation, the above equation can be written as: 

�𝒓(v�1), … , 𝒓(v�Qb)� = 𝑯 ∗ �𝒔(v�1), … , 𝒔(v�Qb)� + �𝒏(v�1), … , 𝒏(v�Qb)� (A.2-20) 

introducing matrices 
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𝑹Q]×Qb = �𝒓(v�1), … , 𝒓(v�Qb)�,   𝑺Q^_^`a×Qb = �𝒔(v�1), … , 𝒔(v�Qb)� (A.2-21) 

and rewrite the above equation now in the matrix form: 

𝑹Q]×Qb = 𝑯Q]×Q^_^`a ∗ 𝑺Q^_^`a×Qb +𝑵Q]×Qb (A.2-22) 

and applying the pseudoinverse of the  𝑺 matrix (and using that 𝑁DºDBn ≤ 𝑁�), pinv(𝑺) = 𝑺{ ∗ (𝑺𝑺{)21, leads 
to the closed analytical relation for the channel estimator: 

𝑯;Q]×Q^_^`a = 𝑹Q]×Qb ∗ pinv�𝑺Q^_^`a×Qb� (A.2-23) 

The elements of 𝑺𝑺{ are correlations of the uncorrelated data streams. Assuming symbols have average unit 
power, an approximated simplistic computationally effective relation is (yet to be investigated further, 
including post-processing smoothing)  

𝑯;Q]×Q^_^`a ≈
1
𝑁�

𝑹Q]×Qb ∗ 𝑺
{ (A.2-24) 

Advantages of EA methodology: The EAs advantages over single antenna elements include the following: 

• More Users: EAs allows more users to participate in the MU-MIMO, assuming UEs have more than 
1 physical antenna (BS cleans the transmission only over EAs, not over the large UE array). It solves 
𝑁¤ > 𝑁@ , or 𝑁¤ ≫ 𝑁@ problem (where: 𝑁¤ ≡ ∑ 𝑁¤(�)

Q[
��1 ). 

• Better Gain: EAs have (much) larger gain than the gain for individual UE antennas; this can be of 
especial importance for the small wavelength arrays. 

• Better Range and CE at BS: EAs channels can be better estimated by the BS. This extends the range 
in TDD regime (channel estimation via uplink from UE is usually a weak point) 

• Speed Up the Communication: Since only EAs channels are needed to be delivered to the BS, this 
speeds up the SRS transmission. Especially in the update regime, where the EAs equalizers are fixed 
and only their channel needs to be delivered.  

• Flexibility: EAs are flexible in their construction and update (see below the multi-step dimensionality 
reduction); they can blend different array architectures: e.g., fully digital steps with analogue steps. 

• Interference Rejection: EAs can include the outer cell interference rejection inside of the EAs 
construction equalizer. This may improve for example:  

o performance of the users closer to the cell border (for general case of the cells)  
o allow usage of smaller size 6G cells which suffer from interference. This can be an essential 

part of the 6G technology (small cells may be a “friendly” way to reduce the BS TX power, 
use smaller voltage electronics, hence reduce non-linearities, make BS electronics be 
economically cheaper). 

• Dynamic Number of EAs: The number of EAs can be dynamic and include “breezing” structures (as it 
will be explained below) and which can be essential for the MU-MIMO ensembles. 

• Channel from Data: UE RX EAs and UE RX EAs are considered in generally different, but if they are 
constrained to be identical, then the possibility of decoding from data is opened. 

• BS TX EAs: For BS consisting of small antenna elements, they can also be amalgamed into larger parts 
for more powerful transmission. 

Assumptions: 

• Simultaneous communication of massive number of antennas from UE devices with, e.g., a lower 
number of BS antennas.   

• Availability of control signalling provided by the UEs to BS. 
• UEs with various antenna arrays architectures (e.g., fully digital, or hybrid analogue-digital). 

Note that the construction and in particular the “ignition” (i.e., the primary construction) of the EAs can be 
done in multiple ways. For example, it can be done based on the channel estimation of the reference signals 
sent by BS toward all UEs. However, it can also be done randomly (several EAs will then be delivered to BS), 
based on prior history, etc. This is an area for further investigation. 
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Simulation and results: Performances of the following schemes are compared below:  

• 8x UE RX array  
• 4x UE RX array  
• Dimensionality reduction scheme 8x à 4x 
• Optimized dimensionality reduction scheme 8x à 4x 

The 1-info layer case and different number of strong interferers are investigated. These are represented as 
interference channels from another cell(s). The knowledge of the interference channel is not assumed, but of 
the noise total correlation matrix and perform whitening (which corresponds to the Gauss-Markov estimator). 

For simplicity and generality, the interferer channel “signatures” over the 8x array are assumed to be 
independent complex gaussian vectors. This can be due to a multi-path environment, or assuming that 8x is 
not the original array size but a dimensionality reduction of a large RX array (then multiple sources are added 
thus becoming approximately Gaussian after that). 

Whitening for strong interferers (if their number is smaller than the number of the Rx antennas) acts similarly 
to nulling approximately performing ZF of the interferers. For example, when interference signature on the 
NR(u) -size array is given by a strong interference channel vector 𝒉�Â6DÀ6Ã, then the whitener becomes 𝑻 = 𝟏 −
𝒉cd&^e&f𝒉cd&^e&f

0

‖𝒉cd&^e&f‖4
, where 𝟏 has dimension of NR(u)×NR(u). This is clearly observable in Figure A.2-11 below, 

with 4 Rx antennas performing ZF of 3 interferers. One may create dimensionality reduction couples (in 
simulation or in HW) in the natural order and to use input permutations to arrange different pairs. Interestingly, 
the permutations before the dimensionality reduction can rise the SNR. This is due to the decorrelation of the 
whitening from the projection by the approximate null space of the interferer. Whitening and BP (best 
permutation) approach performs very close to the 8x case, despite the whitening is performed over 4x 
dimensions. The number of different input antenna array index permutation (used in the simulation) to 
construct n different pairs from total (2n) indices of the full array is (.=)!

=!..
, hence for n=4 pairs out of 8 antennas 

there are 105 possibilities to perform pair-based dimensionality reductions (and the exhaustive search is 
performed). (Proof is “easy”: (2n)! is the total number of array antennas arrangement, n! is the total number of 
the dimensionality reduction arrangement, and 2=is the total number of changes inside pairs) This stresses the 
importance of the Dimensionality reductions optimizations, and its possible effectiveness. 

 
Figure A.2-11: Perfect CSI. The BP (best permutation) approach works well and is much better than the NO 

(natural ordering) up to 10.5 dB gap (BP is almost identical with 8x up to 3 interferers). 
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Additional information on mathematical formulations: Here, 1-info layer case is investigated under strong 
interference noise the assuming it be Complex Gaussian realizations of 𝑁�ÂDÀ6Ã components; the total noise 
power is identical to the info-power. 

𝒏 = 𝑪𝑵t×1�0, 𝜎<:�v;=�. � + 1
ÇQcd^e&f

∑ 𝑪𝑵Qcd^e&f
=�1 t×1 (0,1). 

(A.2-25) 

Let us write the original equation: 

𝒓 = 𝒉𝑠 + 𝒏 

 

(A.2-26) 

and perform dimensionality reduction from 𝑁 to 𝑁/2 equations by weighted average of every two components 
as (this corresponds to matched filtering approach for the outer stage) 

⎣
⎢
⎢
⎢
⎡𝒘1

{𝒓(1:2)
𝒘.
{𝒓(3:4)

𝒘q
{𝒓(5:6)

𝒘r
{𝒓(7:8)⎦

⎥
⎥
⎥
⎤
=

⎣
⎢
⎢
⎢
⎡𝒘1

{𝒉(1:2)
𝒘.
{𝒉(3:4)

𝒘q
{𝒉(5:6)

𝒘r
{𝒉(7:8)⎦

⎥
⎥
⎥
⎤
𝑠 +

⎣
⎢
⎢
⎢
⎡𝒘1

{𝒏(1:2)
𝒘.
{𝒏(3:4)

𝒘q
{𝒏(5:6)

𝒘r
{𝒏(7:8)⎦

⎥
⎥
⎥
⎤
 

 

(A.2-27) 

The projection weights 𝒘u  (dim𝒘u = 2 × 1, 𝑘 = 1:4) be the MF (matched filters) for the corresponding 
indices of the channel chunks are:  

𝒘1 = 𝒉([1:2]) , 𝒘. = 𝒉([3:4]), 𝒘q = 𝒉([5:6]), 𝒘r = 𝒉([7:8]) (A.2-28) 

Alternatively, every weight can also be scaled such that ‖𝒘u‖. = 1. For example, 𝒘1([1:2]) =
𝒉([1:.])
‖𝒉([1:.])‖

 , etc. 

This leads to the equations: 

𝑮r×t
(.) 𝒓 = 𝑮r×t

(.) 𝒉𝑠 + 𝑮r×t
(.) 𝒏 (A.2-29) 

where the matrix 𝑮r×t
(.)  is: 

𝑮r×t
(.) = 𝒇(𝒉t×1) =

⎣
⎢
⎢
⎢
⎡ 𝒘1

{ 𝟎1×.
𝟎1×. 𝒘.

{
𝟎1×. 𝟎1×.
𝟎1×. 𝟎1×.

𝟎1×. 𝟎1×.
𝟎1×. 𝟎1×.

𝒘q
{ 𝟎1×.

𝟎1×. 𝒘r
{ ⎦
⎥
⎥
⎥
⎤
 (A.2-30) 

The reduced dimension received vector relation is: 

𝒓pr×1 = 𝒉qr×1 ∗ 𝑠 + 𝒏rr×1, (A.2-31) 

where 

𝒓pr×1 = 𝑮r×t
(.) 𝒓 ,   𝒉qr×1 = 𝑮r×t

(.) 𝒉 ,    𝒏rr×1 = 𝑮r×t
(.) 𝒏. (A.2-32) 

The optimal dimensionality reduction of from 4 to 1 (estimating the single layer) is given by the Gauss-Markov 
estimator (and it can be derived in multiple ways) 𝒘r{𝒓pr×1, where 

𝒘r{ = 𝛼 ∗ 𝒉qr×1{ 𝑪𝒏Ìg×)
21  ,   𝛼 = 1

𝒉Íg×)0 𝑪𝒏jg×)
k) 𝒉Íg×)

 

 

(A.2-33) 

with SNR  

𝑆𝑁𝑅 = �	𝒉qr×1�
{
𝑪𝒏Ìg×)
21 𝒉qr×1 

 

(A.2-34) 

Here,  
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𝐶𝒏Ìg×) = 〈𝒏rr×1𝒏rr×1{ 〉 = 𝑮r×t
(.) 〈𝒏𝒏{〉𝑮r×t

(.){ = 𝑮r×t
(.) 𝑪=𝑮r×t

(.){ 

 

(A.2-35) 

This leads to 

𝑆𝑁𝑅J�&.6ÀJ	t→r = º𝑮r×t
(.) 𝒉t×1»

{
u𝑮r×t

(.) 𝑪=	t×t º𝑮r×t
(.) »

{
v
21
º𝑮r×t

(.) 𝒉t×1» 
(A.2-36) 

Note that the 𝐺(1×r)
(1) 𝑇(r×r)

(1)  part is represented by the above row-vector 𝑤r{ = 𝐺(1×r)
(1) 𝑇(r×r)

(1)  (having dimension 
of 1 × 4). The Gauss-Markov estimator computes two these matrices in one-step. 

The equalizer for 𝜐 layers is visualised in Figure A.2-12. 

Final equalizer of EAs                                         interf.Reject.Matrix  

                                                         = 

 

 

                                   𝜐 × 8                            𝜐 × 4      4 × 4                     	4 × 8 
Figure A.2-12: Example of equalizer for 𝝊 layers 

Equalizer with permutational degrees of freedom Π matrix (which permutes the Rx inputs, here 8 inputs) is 
visualised in Figure A.2-13. 

Final equalizer of EAs                                         interf.Reject.Matrix  

                                                         = 

 

 

                                𝜐 × 8                            𝜐 × 4      4 × 4                     	4 × 8 
Figure A.2-13: Example of equalizer with permutational degrees of freedom 𝚷 matrix. 

For the single layer 𝜐 = 1, the equalizer is (this may define the single EA which rejects the interference): 

𝑮 = 𝒘t×1
{ = 𝑮(1×r)

(1) 𝑻(r×r)
(1) 𝑮r×t

(.)  

 

(A.2-37) 

where 𝑻r×r is the whitening matrix. 

The RX equations can also be permuted as: 

𝑷𝒓 = 𝑷𝒉𝑠 + 𝑷𝒏 

 

(A.2-38) 

where 𝑷 is a permutation matrix. Then, the development can be repeated.  

The permutation which brings the largest SNR is to be selected. 

𝑆𝑁𝑅J�&.6ÀJ	t→r
(~) = º𝑮r×t

(.)(~)𝒉t×1
(~) »

{
u𝑮r×t

(.)(~)𝑪=	t×t
(~)(~) º𝑮r×t

(.)(~)»
{
v
21
º𝑮r×t

(.)(~)𝒉t×1
(~) » 

 

(A.2-39) 

Here (𝑃)  indicates that the channel is permuted and the matrix 𝑮r×t
(.)(~)  is calculated after this permuted 

channel. Namely, for  

𝒘1 = 𝒉t×1
(~) ([1:2]) , 𝒘. = 𝒉t×1

(~) ([3:4]), 𝒘q = 𝒉t×1
(~) ([5:6]), 𝒘r = 𝒉t×1

(~) ([7:8]) (A.2-40) 

𝐺 𝐺(.) 

 
𝑇(1) 𝐺(1) 

𝐺 𝐺(.) ∗ Π 

 
𝑇(1) 𝐺(1) 
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This gives: 

𝑮r×t
(.)(~) = 𝒇º𝒉t×1

(~) » =

⎣
⎢
⎢
⎢
⎡ 𝒘1

{ 𝟎1×.
𝟎1×. 𝒘.

{
𝟎1×. 𝟎1×.
𝟎1×. 𝟎1×.

𝟎1×. 𝟎1×.
𝟎1×. 𝟎1×.

𝒘q
{ 𝟎1×.

𝟎1×. 𝒘r
{ ⎦
⎥
⎥
⎥
⎤
 

 

(A.2-41) 

Note that this can be rewritten as:  

𝑪=	t×t
(~)(~) = 𝑪=	t×t(𝒑, 𝒑) 

 

(A.2-42) 

Where 𝒑 is the permutation vector, which can also be formally represented via the permutation matrix 𝑷: 

𝒑 = 𝑷 ∗ [1:8]@ 

 

(A.2-43) 

In practice, it is simpler to construct possible permutation vectors. One can show that for 8à4 reduction, there 
are 105 permutations. 

A.2.4 EMF exposure metrics 
The EMF exposure was evaluated by using incident power density and SAR in Section 10.6 according to the 
ICNIRP guidelines [ICNIRP20]. The equivalent plane-wave incident power density is defined as: 

𝑆�Â! =	
1
2𝜂�

|𝐸ÃC|., 
(A.2-44) 

where η0 is the free-space wave impedance (Ω); |Efs| is the magnitude of the electric field in free-space (V/m). 
For the general public, a limit value of 10 W/m2 for the incident power density was considered. While such 
value is intended to be spatially averaged over the whole-body surface, in this study, spatial peak power density 
was conservatively used in the analysis. 

SAR is evaluated in the body phantom. The SAR is defined as: 

𝑆𝐴𝑅 =	
𝜎|𝐸Ñm|.

2𝜌
 

(A.2-45) 

where σ and ρ are the electrical conductivity (S/m) and mass density (kg/m3) of human tissue; |Ehb| is the 
magnitude of the electric field in the tissue. The local SAR was averaged over a volume of tissue in the shape 
of a cube with a mass of 10-g. The corresponding local SAR limit for the general public is 2.0 W/kg for 10-g 
averaging scheme. 

The whole-body average SAR was also calculated: 

𝑊𝐵𝑆𝐴𝑅 =	
𝑃BmC
𝑚Ò·

 (A.2-46) 

where 𝑃BmC is the power absorbed by the phantom (W), and 𝑚Ò· is the mass of the body (kg). 

When considering the EMF exposure from different MIMO layers, signals are uncorrelated. Therefore, 
incident power density and SAR are combined in uncorrelated way. 

 

A.3 Waveform, modulation, and coding  
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A.3.1 Evolution New Radio – Available frequency blocks and occupied channel 
bandwidth 

The available frequency blocks in W- and D-bands, following the ECC recommendation are presented in Table 
A.3-5. Channel bandwidth (CBW) and occupied channel bandwidth (OCB) for 264 physical resource blocks 
(PRB) with 4096 IFFT size and with different subcarrier spacings (Δf, µ being the scaling factor exponent) are 
presented in Table A.3-6. 

Table A.3-5: Available frequency blocks in W and D bands. 

 W Band D Band 

Carrier frequency (CEPT) 92 – 114.25 GHz 130 – 174.8 GHz 

Available frequency blocks 

(ECC recommendation) 

2 GHz (92 - 94) 

5.9 GHz (94.1 - 100) 

7.5 GHz (102 - 109.5) 

2.5 GHz (111.8 - 114.25) 

4 GHz (130 - 134) 

7.5 GHz (141 - 148.5) 

12.9 GHz (151.1 - 164) 

7.8 GHz (167 - 174.8) 
 

 Table A.3-6: Cyclic prefix lengths, channel bandwidths and occupied channel bandwidths for different 
subcarrier spacings with 4k FFT. 

BW, 4k FFT CP length, 4k FFT 

µ Δf 
(kHz) CBW (GHz) 

OCB, 264 
PRBs 
(GHz) 

Regular 
CP (µs) 

Extended 
CP (µs) 

0 15 0.05 0.05 4.6875 16.667 

1 30 0.1 0.10 2.3428 8.333 

2 60 0.2 0.19 1.1719 4.167 

3 120 0.4 0.38 0.5857 2.083 

4 240 0.8 0.76 0.2930 1.042 

5 480 1.6 1.52 0.1465 0.521 

6 960 3.2 3.04 0.0732 0.260 

7 1920 6.4 6.08 0.0366 0.130 

8 3840 12.8 12.17 0.0183 0.065 

9 7680 25.6 24.33 0.0092 0.033 

 

A.3.2 Evolution New Radio – SCS and PN tolerance 
Simulations were carried out in 140 GHz carrier frequency to study the performance of the CP-OFDM and 
DFT-s-OFDM waveforms under common phase error CPE and ICI PN with different SCS. The PN model 
used was from Hexa-X deliverable D2.3 Section 4.2.1 [HEX23-D2.3], and either CPE or inter-carrier 
interference (ICI) compensation was used to fight the PN. From the results in Figure A.3-14, it can be seen 
that the largest currently supported SCS for FR2-2 of 120 kHz is not sufficient for mitigating the PN effects in 
this frequency band. Extending the SCS to 960 kHz or 1920 kHz is needed to fight the PN for both CP-OFDM 
and DFT-s-OFDM waveforms.  
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Figure A.3-14: Comparison of CP-OFDM and DFT-s-OFDM with different SCS under Hexa-X PN in 140 GHz. 

A.3.3 Evolution New Radio – Required output backoff  
In Figure A.3-15 [TLP+20], the required output back-off is shown for CP-OFDM and SC-FDMA waveforms, 
when assuming 20 dB adjacent channel leakage ratio (ACLR) requirement and modulation specific error vector 
magnitude (EVM) requirement. It can be observed that depending on the modulation order, CP-OFDM 
requires approximately from 3 dB to 5 dB more output power back-off, indicating that SC-FDMA is able to 
provide significantly better coverage. 

 
Figure A.3-15: Comparison of PA output power back-off with 20 dB ACLR requirement and modulation specific 

EVM requirement [TLP+20]. 

A.4 Intelligent radio air interface design 
A.4.1 Learned MIMO Waveforms  

The high-level description of the objective and scenario for the enabler “learned MIMO waveforms” is 
presented in Section 6.1.1. The detailed system parameters used for training and validating the models are 
presented in Table A.4-7, Table A.4-8 and Table A.4-9 list the different assumptions behind the simulation 
results. 
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Table A.4-7: Detailed system parameters. 

Parameter Notation Value 
Number of BS  N/A 1 
Number of UEs N/A 1 
BS number of RX 
antennas  𝑁¤ 4 

UE speed  N/A 0-5 m/s 
UE number of TX 
antennas  𝑁@ 2 

Frequency band N/A 3.5 GHz 
Subcarrier spacing N/A 30 kHz 
Slot length 𝑁x 14 OFDM symbols 
Number of 
subcarriers 𝑁� 72 

Channel model N/A CDL-A, CDL-B, CDL-C 
RMS delay spread N/A 10-300 ns 

 
Table A.4-8: Key assumptions. 

Hardware impairment  None 

Synchronization Assumed perfect 

CSI availability at transmitter, 
receiver, RIS (if applicable) Not available 

Waveform CP-OFDM 

 
Table A.4-9: Assumptions for AI/ML-assisted transmissions 

Type of the used AI/ML 
training method Supervised learning 

Training  Offline 

‘Features’ and ‘labels’ for 
training the models  

Autoencoder-type approach for 
detecting transmitted bits  

Type of the AI model CNN 

Model architecture Convolutional ResNet with a learned 
multiplicative layer 

Loss function for training 

Binary cross-entropy with SNR-based 
weighting and an additional term based 
on the quality of the learned 
constellation 

Model deployment Transmitter and receiver 

Training scheme Centralized 

To gain further insight into the considered ML-based scheme, observe the learned constellations in Figure 
A.4-16. It is evident that the learned constellations are asymmetric, which is an obvious requirement for blind 
and pilotless detection. Moreover, when considering the differences in the constellations of the overlapping 
spatial streams, it can be observed that at least one of the overlapping constellations has some outliers. This is 
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likely a useful feature for the considered DeepRx receiver when it learns to do pilotless separation of the spatial 
streams, as such differing outliers are more easily detectable. 

Next, the proposed learned pilotless scheme is compared to a conventional QAM-OFDM waveform and a 
nonlinear K-Best detector using either perfect channel state information or a demodulation reference signal-
based channel estimate. The former represents essentially the highest achievable performance under the 
considered simulation scenario, while the latter utilizes a DMRS pattern consisting of two pilot-carrying 
OFDM symbols within the slot, with the pilots located on the 3rd and 12th OFDM symbols. 

 
Figure A.4-16: Learned constellation for both spatial streams and both modulation orders 

In order to compare the different schemes in terms of the achieved throughput, the spectral efficiency has been 
defined as follows: 

𝑆𝐸 = (1 − 𝐵𝐿𝐸𝑅)(1 − 𝐶𝑃)
𝑁�
𝑁���

𝑁@𝐶𝑀 (A.4-47) 

Where 𝐵𝐿𝐸𝑅 is the target block error rate (here it is assumed 10%), 𝐶𝑃 is the relative overhead due to cyclic 
prefix, 𝑁�  is the total number of data symbols per slot, 𝑁���<©  is the total number of resource elements, 
including those reserved for DMRS, 𝐶 is the code rate, and 𝑀 is the modulation order. 

Figure A.4-17. shows the spectral efficiencies of the different schemes with respect to the SNR, calculated 
using the above definition. The modulation order and code rate are selected to be the highest possible under 
which the BLER target of 10% is achieved. In addition, also the MCS index utilized by each scheme is 
indicated on the plot, the MCSs being similar to 5G NR MCS index table 2 for the considered modulation 
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orders [38.214]. It can be observed that at the lower SNRs the ML-based pilotless scheme achieves the BLER 
target with the same MCS as the pilot-based scheme, which translates to a higher spectral efficiency. However, 
when the 64-point constellation is used (from MCS index 7 upwards), the spectral efficiency of the ML-based 
scheme starts to deteriorate compared to the conventional DMRS-based system. Indeed, when the SNR goes 
above 16 dB, the spectral efficiency of the ML-based scheme is slightly lower than that of the DMRS-based 
scheme. 

 
Figure A.4-17: The spectral efficiency of the considered schemes with BLER of 10%. The used MCS indices are 

also shown. 

A.4.2 ML-based channel state feedback compression in a multi-vendor scenario  
This section details the scenario and system, hardware parameters as well as the AI/ML assumption considered 
for the enabler ML-based channel state feedback compression in a multi-vendor scenario (see Section 6.2.1). 

For this simulation-study the scenario assumes 19 gNBs, with 3 cells per gNB, each with 32 antennas, and 
with inter-cell distance of 200 meters. Each cell is serving 5 UEs, each with 4 antennas. The UEs are randomly 
deployed around the gNB following a Uniform distribution. The pathloss of each UE depends on the location 
of the UE with respect to the gNB. The UEs have a pedestrian-like mobility of 3km/h. 

A Dense Urban deployment scenario with Urban Micro channel model is considered, with a system operating 
in the FR1 band, at 4GHz, with an 20MHz bandwidth and subcarrier spacing of 30kHz. Four resource blocks 
per sub-band are assumed; with 13 sub-bands in the 20MHz bandwidth. A TDD frame configuration and 
OFDM waveform are considered.  

There is no hardware impairment included and the channel state information at the transmitter and receiver is 
assumed realistic. The simulations are with full buffer traffic and FTP traffic with varying resource utilization. 

The scenario and parameters are summarized in the tables below. 

The evaluation metric is the SGCS between the eigenvectors of the ground truth CSI 𝑄 and the reconstructed 
CSI 𝑄z. The cosine similarity (cs) measures the angles between two vectors, it is defined as:  

cs(𝐪,𝐝) = 	
𝒒@𝒅

‖𝒒‖‖𝒅‖
 

(A.4-48) 

where,	‖𝒒‖	=	zΣ�q�.	is the l2-norm of q. The SGCS is given as,  

𝜌. =	
1
𝑁H�

ª y
.𝒘u

½𝒘u
¢ .

‖𝒘u‖.𝒘u
¢ .
~
.Q'l21

u��

 
(A.4-49) 
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where 𝒘o is the true CSI eigenvector for the k-th sub-band and 𝒘o
¢  is the reconstructed CSI eigenvector for 

the k-th sub-band.	𝑁H� is the number of sub-bands, i.e., 14. 
 

Table A.4-10: Detailed system parameters. 

Parameter Notation Value Notes  

Number of BS  N/A 19 Each gNB has 3 cells 

Number of UEs N/A 5 UE per cell  

BSx location  N/A  The inter-cell distance is 200 
meters. 

BSx speed  N/A Fixed  

BSx number of TX / RX antennas  N/A 32  

UEx location  N/A Random Uniformly distributed 

UEx orientation N/A Random Uniformly distributed 

UEx speed  N/A 3km/h  

UEx number of TX/RX antennas  N/A 4  

Frequency band N/A 4GHz  

Subcarrier spacing N/A 30 kHz  
Table A.4-11: Details on Hardware parameters. 

Hardware impairment No HW impairment is considered. 
Synchronization Realistic 
Channel model Realistic channel model 
CSI availability at transmitter, receiver Imperfect. 
Waveform OFDM 

Table A.4-12: Assumptions for AI/ML-assisted transmissions. 

Type of the used AI/ML training method Supervised learning 
Training  Offline 
‘Features’ and ‘labels’ for training the 
models  

Features: CSI 
Labels: CSI 

Type of the AI model Proprietary at UE and gNB 
Model architecture Proprietary 
Loss function for training  
Model deployment At both transmitter and receiver 
Training scheme Distributed and sequential 

A.4.3 Intelligent CSI compression 
This section provides further details on the Intelligent CSI compression enabler, introduced in Section 6.2.2. 
while this section discusses the defined system and mathematical models, the underlying assumptions, and the 
main results achieved so far. 

System model: This research work concentrates currently on the SU-MIMO side of the CSI-compression, 
where a precoder at BS treats a single UE (see example in Figure A.4-18). Generally, a larger MU-MIMO 
precoder, treating multiple UEs, can be also constructed from the UE CSI report (e.g., a ZF precoder). 
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Figure A.4-18: DL transmission for the SU-MIMO, including DL Precoder at BS with NT antennas for a single 

UE with NR antennas. 

Mathematical model: The received signal at a UE RE (resource element) is: 

𝒓 = 𝑯𝑾𝒔 + 𝒏 (A.4-50) 

where 𝒓 is the receiving vector, 𝑯 the channel matrix, 𝑾 the precoding matrix, 𝒔 the transmitted symbol and 
𝒏 the noise, with following dimensions: dim𝒓 = dim𝒏 = 𝑁¤ × 1,   dim𝑯 = 𝑁¤ × 𝑁@,  dim𝑾 = 𝑁@ × 𝜐. 

It is well known, since [T99], that the capacity is maximized when precoder 𝑾 utilizes (per RE) the “best” 
(corresponding to the largest eigenvalues) eigen-vectors of the channel corelation matrix 𝑪 = 𝑯{𝑯, i.e., 
precoder is constructed as: 

𝑾 = [𝒆1, … , 𝒆Ó]𝑫Ó×Ó					, ‖𝒆u‖. = 1 (A.4-51) 

Here 𝒆u  are: 𝑪𝒆u = 𝜆u𝒆u  for 𝑘 = 1: 𝜐 , and 𝑫Ó×Ó  is a diagonal matrix with redistributed power between 
layers. Note that for NR=1 case, the (single) channel matrix row is automatically the eigenvector of 𝑪 (it can 
be scaled further for 1-norm). The Telatar’s solution becomes the Tx MRC, which performs optimal combining 
of the TX streams: “synchronizing” channel phases for the coherent addition with weights matched to the 
channel amplitudes. 

 
Figure A.4-19: Example of SU-MIMO channel improvement via linear precoding under unit TX power 

constraint. 
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In Figure A.4-19, an example of SU-MIMO channel improvement via linear precoding under unit TX power 
constraint is presented. The full channel matrix cannot be delivered back digitally in full per every RE (and it 
is costly even per sub-band, as 5G Type2, even with its large coefficients quantization) due to its large size, 
hence the need for the Advanced CSI-compression. In 5G NR standard, this is done with further frequency 
compression of the sub-band precoder via eType2, or via AI-based schemes (discussed in Rel.18 and further). 

Sometimes, as is the case in 5G, the power is identically distributed between layers (despite some non-
optimality of this solution): 

𝑾 =
1
√𝜐

[𝒆1, … , 𝒆Ó] (A.4-52) 

How to “synchronize” different channels inside of a sub-band for the optimal result is an open question.  
Telatar’s approach can be heuristically generalized for sub-band precoder construction by performing 
correlation matrix averaging in every sub-band (sometimes a simplistic channel averaging is used, and the 
correlation matrix is then constructed from the averaged channel; the averaging of the channel and the 
correlation matrix over sub-band may also be mixed). This constructs the sub-band (SB) target precoder, which 
is then further compressed. Note that precoding may aim either towards (effective) channel bettering or 
towards MU-MIMO improvement. To achieve any of these aims, the BS needs the channel knowledge which 
is done with a typically lossy compression in the FDD regime (sometimes, the TDD regime may utilise this 
scheme to extend the range). It is noted that the MU-MIMO aim may demand a better channel similarity (after 
reconstruction at the BS). MU-MIMO part is often ignored at the UE and self-performance optimization is 
done to construct the template sub-band precoder which is further compressed and then delivered digitally to 
the BS. 

In many AI schemes for the CSI-compression (typically NN-based), the power per-layer optimization (𝑫Ó×Ó) 
is not considered, and the “bare” 1-norm scaled eigenvectors represent the input 𝒙 to the CSI-compression 
scheme (and such schemes are often trained on the averaged cosine similarity criterion). The AI-based CSI-
compression and feedback approach, despite multiple possible NN topologies, can be described as [R1-
2203550]: 

𝒙ä = 𝑔JÀ!ºJÀ6(𝑓;=���;h	(𝒙, 𝜽ÀÂ!ºJÀ6), 𝜽JÀ!ºJÀ6) (A.4-53) 

where 𝜽JÀ!ºJÀ6  and 𝜽ÀÂ!ºJÀ6  are parameters of the decoder and encoder functions and typically represent 
weights of their related NNs (see Figure A.4-20). Note that the encoder can be also alphabet based. This 
simplifies the decoder and eliminates the need in 𝜽JÀ!ºJÀ6. 

 
Figure A.4-20: AI-based CSI feedback neural network performing lossy compression (e.g., of the input 

eigenvectors at every sub-band “n”). 

Assumptions: In current analysis, perfect channel knowledge is assumed. In future steps, it is planned to 
introduce impairments and investigate their influence on performance. 

Simulation and results: In Figure A.4-21, the capacity performance of the eType2 precoder is compared in 
terms of number of bits per RE averaged by the number of layers. The precoder uses parameters 𝑝Ó = 1/4 
(leading to 5 Fourier beams (⌈19/4⌉ = 5) and 𝛽 = 3/4  (governing non-zero coefficients). The spectral 
efficiency in the figure is normalised by the number of layers. It can be observed a good closeness of the 
eType2 precoder to both the target sub-band precoder as well as to the SVD bound in the L=6 beam space. On 
the other hand, a large gap with Type1 precoder is observed: 3∗ Δ𝑏𝑖𝑡𝑠 = 3 ∗ (6.33 − 4.78) = 4.65[𝑑𝐵]. This 
confirms the advantage and importance of the eType2 precoder. 
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Figure A.4-21: Performance of the eType2 precoder for TDLA-30-5/LOW channel, 𝝊 =2 information layers, and 

use of L=6 spatial beams. 

Note the gap between the SVD bound with the full channel basis for dim𝑯 = 4 × 32 (which may be also 
interpreted as L=16 beams, corresponding to 2*16=32 TX antennas of the BS) and the SVD in the L=6 basis 
(total columns’ length is 2*6=12) calculated for the channel 𝑯QA×.® = 𝑯QA×Q]𝑩𝑩Q]×.®.  The gap is about 
1[bit] (7.65[bit] vs 6.68[bit]) which corresponds to 3[dB] gap. 

In Figure A.4-22, the performance for the 3-layer case and L=4 spatial beams is examined (𝑝Ó and 𝛽 are kept 
as same before). A gap with Type1 precoder is observed again: 3∗ Δ𝑏𝑖𝑡𝑠 = 3 ∗ (4.5 − 4.04) = 1.38[𝑑𝐵].  
This gap is still important but is much smaller than for the 2-layer case. It is observed that the precoder is less 
aligned with the SB precoder, and in future work a possibility of improvement will be investigated. The current 
construction incorporates the suggestion from [ATM19]. It is interesting to see that the SB precoder performs 
very close to the bound. Note also that 4-beams based precoder (even if a more refined design will be somehow 
possible and bring eType2 closer to the SB precoder) still will perform far from the SVD bound of the full 
basis. The gaps between the two SVD bounds (full basis and 4-beam basis based) are 3*(6.87 – 5.23) 
=4.92[dB]. Hence, trade-offs delivering better compression and preserving a larger basis size (in 5G number 
of beams) may be essential. 

 
Figure A.4-22: Performance of the eType2 precoder for TDLA-30-5/LOW channel, υ=3 information layers and 

use of L=4 spatial beams. 

 

 



Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 197 / 218 

 

Table A.4-13: Detailed system parameters and assumptions. 

Parameter Notation Value Notes 

General deployment and environment 

Number of BS   1  

Number of UEs  1 Per UE, hence 1 (while in MU-MIMO there are 
more) 

Detailed deployment and architecture 

BS number of TX 
antennas  NT  

32 For NTX = 32. It can be 4-32 or in general more. 
 

BS number of RX 
antennas  N/A   Typically, the same as TX 

UE number of TX 
antennas  N/A   Not important for DL CSI-compression 

UE number of RX 
antennas  NR 1-4 1-4 is primarily considered for DL CSI-

compression. But it can generally be more 
Frequency range and bandwidth 
Frequency band FR1   
Bandwidth  10-100 MHz More if multiband system 
Details on Hardware parameters 
Ideal hardware Yes   

Assumptions 

Channel model   5G channels, e.g., TDLA-30-5/LOW, maybe also 
stochastic 

CSI availability at 
transmitter   Compressed CSI at transmitter 

A.4.4 CSI prediction 
This section provides further details on the enabler “CSI prediction” presented in Section 6.2.3.  

The channel prediction problem is formulated as image prediction problem in the temporal-frequency domain. 
Specifically, given a channel image of state a sequence of images is predicted which represents the sequence 
of future channel states as outlined in the following. 

A. Autoencoder (AuE) for CSI compression 

First of all, a brief description of the CSI compression based on autoencoder is here provided. The aim of AE-
based CSI compression is to minimize signal overhead or reconstruction error through dimensionality 
reduction. 

Figure A.4-23 (a) illustrates the AE-based CSI feedback enhancement based on autoencoder with encoder 𝜙 
and decoder 𝜙21. The encoder part of autoencoder is located on the UE side to compress channel data into a 
reduced dimensional space while its decoder part is applied on the BS side to reconstruct the original channel 
data from the compressed feedback. 

Dimension reduction occurs when high-dimensional states 𝐻u  are encoded to a low dimensional 
approximation, latent code 𝑧u = 𝜙(𝐻u), which enables to minimize the feedback overhead imposed by 𝑧u. 
Unfortunately, the CSI available at the BS becomes outdated due to the channel variation over time and the 
performance of precoding design based on the outdated CSI is limited by channel aging. Moreover, it is not 
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possible to predict the temporal evolution of radio channel under the AE-based CSI feedback schemes currently 
being considered within Release-18. 

 

Figure A.4-23 Schematic diagrams of two deep learning models: (a) CSI compression by Autoencoder (b) CSI 
prediction by proposed evolutional CSI neural network (evoCSINet) 

B. evolutional CSI Neural Network (evoCSINet) for CSI prediction 

Aiming to achieving multi-step-ahead predictions based on the single feedback information, a dynamicNet 𝐹 
is introduced that learns the temporal evolution of radio channel in a latent space. In particular, the latent 
dynamic model identifies a low-dimensional representation of channel dynamics from channel data to predict 
a latent code one step forward in time as follows: 

𝑧u5Ô = 𝐹(𝑧u)	, where ∆ denotes a configurable stride in slot time and 𝐹 represents the same dynamical system 
as  𝐹 but in a different space. 

A diagram of the proposed evoCSINet is shown in Figure A.4-23 (b). The evoCSINet applies the combination 
of autoencoder with dynamicNet. In the proposed evoCSINet model, an autoencoder, composed of 𝜙 and 𝜙21, 
achieves an end-to- end CSI compression and reconstruction by learning the state representation in the original 
channel state space. The two ingredients of autoencoder and dynamicNet enable a dynamics representation of 
radio channel as 

𝐻u5Ô = 𝜙21(𝐹�𝜙(𝐻u)�) (A.4-54) 

where dynamicNet 𝐹 uses the encoder output 𝜙(𝐻u) as an input to produce its output 𝜙(𝐻u + Δ) and it is 
processed by the decoder to produce 𝐻u5Ô. 

The factorized decomposition of channel dynamics above is especially advantageous for the problem setting 
since the decomposition of φ and φ−1 along with 𝐹 in a latent space allows evoCSINet to fit into the CSI 
feedback procedure. 

More importantly, as shown in Figure A.4-23(b), a multi-step channel prediction can be achieved in latent 
space by applying the dynamicNet 𝐹 in a recursive manner. A recursive multi-step-ahead prediction in the 
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latent space can be generated with 𝐹 by predicting a channel state at a time step and feeding in the new 
prediction as an input for the next prediction. 

 

A.4.5  Beamforming with imperfect CSI 
This section details the “Beamforming with imperfect CSI” enabler, presented in Section 6.3.1.  

It should be noted that in this work the amount of information that is fed to the ML beamformer is intentionally 
limited. For example, it does not receive historical channel estimates, which precludes that the ML beamformer 
can learn to predict future channels, but instead it is forced to form beams that are robust to potential 
imperfections in the channel estimates. A natural progression of this is to apply some form of channel 
prediction to the estimated channels and use a channel predictor that can also estimate prediction uncertainties, 
like a Kalman filter or one of its ML counterparts. 

ML Beamformer 

The ML model is based on multi-head attention from the transformer architecture [VA17] (Figure A.4-24). 
Parameters related to the architecture and training procedure are defined in Table A.4-14. The estimated 
channels (𝐻;u) for the multiplexed users are normalized jointly, converted to real values by stacking the real 
and imaginary parts along the last axis, reshaped to remove the receive antenna dimension (which is assumed 
to be one), and then fed through a dense layer with	𝑁;:� activations applied in the last dimension. 

The core part of the architecture is the Encoder, which heavily inspired by the transformer [VA17]. It consists 
of Nenc stacked Encoder blocks (depicted in Figure A.4-25). The encoder blocks use multi-head attention to 
account for all interactions between users. This makes the architecture user permutation equivariant which in 
turn makes training efficient and supports generalization over number of users. Since the users does not have 
a natural order, the positional encodings are omitted, which are present in the original transformer architecture. 
Each user embedding is then processed individually by a feed forward block consisting of two dense layers 
with Nemb*4 and Nemb activations respectively, and ReLU activation function after the first layer.  

The output from the encoder is then fed to a dense layer (operating in the embedding dimension), reshaped to 
restore the receive antenna dimension, converting the stacked real and imaginary parts to complex numbers 
and then each precoder is normalized to unit power before transposing it to suitable output dimensions.  This 
model is applied to the channel estimates of each Resource Block Group independently. 

 
Figure A.4-24: The ML model architecture is based on the encoder of the Transformer [VA17]. One of its core 
components is the attention that models interactions between users. This makes the architecture equivariant to 

user permutations which makes it computationally 
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Figure A.4-25: Encoder block from the transformer [VA17]. It consists of a Multi-Head Attention block where 

all interactions between users are modelled, as well as a feed forward block that performs processing 
individually for each user. 

Table A.4-14: Summary of ML parameters. 

Parameter Value Symbol 

Embedding dimension 64 Nemb 

Number of encoder blocks 2 Nenc 

Number of attention heads 4  

Number of training epochs 200  

Learning rate 1e-4  

Optimizer Adam  

 

Evaluation: During the training time, it is assumed to have access to a differentiable evaluation function 𝑣 =
𝑓(𝑊,𝐻)) that takes the selected precoders as well as the true channels and outputs a scalar that will be 
maximized. In this study, the spectral efficiency has been used, which can be expressed as 

𝑣 =ª𝑙𝑜𝑔.(1 + 𝛾u)
u

 (A.4-55) 

where 𝛾u is the Signal to Interference and Noise Ratio for the received signal of user 𝑘 and can be expressed 
as 

𝛾u =
‖𝐻u𝑊u‖.

𝜎u. + ∑ ‖𝐻u𝑊v‖.
QB'CD
v�1,v£u

 (A.4-56) 
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where 𝑊u ∈ ℂQ2E×QDE is the precoding matrix for user 𝑘, 𝐻u ∈ ℂQDE×Q2E is the true downlink channel matrix 
for user 𝑘 , and  𝜎u.  is the noise variance for user 𝑘 . Since this function depends on the type of receive 
processing that is applied in the UE, which is typically not specified by the standard in 3GPP systems, it can 
be seen as a proxy for the true instantaneous performance. 

Assumptions and limitations: In the following, some of the assumptions and limitations in this work are 
discussed. 

• Offline training: The training procedure assumes availability of the perfect channel state information 
which is typically not available in an online setting.  

• Equal power for all UEs: The expression for spectral efficiency assumes that the same power is used 
for all UEs. Precoders are normalized per user both for the ML beamformer and SLNR.  

• The same evaluation function for training and testing: It is assumed that the evaluation function (𝑣 =
𝑓(𝑊,𝐻)) is known and used both for training and evaluation. Since this depends on the type of 
receiver, which is typically not specified by the standard in 3GPP systems, it is assumed that it is 
possible to come up with a reasonably accurate proxy for the receiver.  

• Single antenna UEs: The expression for spectral efficiency above assumes single antenna at the 
receiver. 

SLNR Baseline method: As a baseline method, the Signal to Leakage and Noise precoder [STS07] is used. 
The precoder 𝑊u ∈ ℂQ2E×QDE for user 𝑘 can be expressed as 

𝑊u = 𝛽�𝑰 + ª
1
𝜎v.
𝐻;v𝐻;v{

QB'CD

v�1,v£u

�

21

𝐻;u 
(A.4-57) 

where 𝐻;u ∈ ℂQDE×Q2E is the estimated downlink channel matrix for user 𝑘, 𝜎u. is the noise variance for user 𝑘, 
and 𝛽 is a scaling factor that normalizes precoders to unit power per user, i.e., 𝑊u𝑊u

{=1.  

 

A.4.6 User pairing for MU-MIMO 
This section discusses in further details the “User pairing for MU-MIMO” enabler presented in Section 6.3.3. 
The objective of this study is to define a ML algorithm that can select the UEs that can be co-scheduled in 
MU-MIMO, using only partial channel information. 

System model: multi user MIMO (MU-MIMO) is a wireless communication technology that allows multiple 
users to transmit and receive data simultaneously on the same radio channel. It is a variation of MIMO 
technology that was originally developed for use in wireless networks. With MU-MIMO, a base station or 
access point can communicate with multiple devices (users) at the same time and using the same carriers, by 
using multiple antennas to separate the signals transmitted to each user.  This increases the network's capacity 
and efficiency, as more data can be transmitted at once, and the time required for each user to complete their 
communication is reduced. 

MU-MIMO optimization is one of the potential use cases (Use Case 22) described in O-RAN specification 
[ORAN23], and in particular the problem of grouping is under study as a specific use case (UC 14) for massive 
SU/MU-MIMO. In O-RAN UC 22 for MU-MIMO optimization, full channel matrices describing the channel 
state for each user are not available: only a limited amount of information is available, including e.g., CQI, 
PMI, RI, buffer status, etc. In O-RAN architecture this information is exchanged between O-CU/O-DU nodes 
and a near-real time RIC through the E2 interface: since the overhead of exchanging full channel state 
information (CSI) through the E2 interface could be too big, only partial CSI is currently assumed in this 
architecture. While different solutions exist for MU-MIMO user pairing and precoder computation when the 
full channel matrix of users are available (e.g., Zero Forcing [SSH04] or SLNR [TSS05] based approaches), a 
potential usage of machine learning can be envisaged for scenarios like the one of O-RAN UC 22, where only 
limited channel state information is available. As stated in O-RAN work, addressing this use case can also 
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open the door for future expansion of MU-MIMO to support cooperative multi-point transmission (CoMP), 
covering both inter-cell interference cancellation (ICIC) and joint multi sites MU-MIMO. 

The objective of this study is to define a ML algorithm that can select the UEs that can be co-scheduled in 
MU-MIMO, using only partial channel information. There are currently different studies that introduce the use 
of reinforcement learning (RL) to physical layer communication, and in particular to address MU-MIMO 
[BJ19]. The basic framework for RL studies is Markov decision processes (MDP). The main variables in a 
MDP are: 

• The state (s) – what an agent observes in the environment in a certain moment, 

• The action (a) – something the agent can do in the environment, 

• The reward (r) – a value the agent receives as feedback from the environment after performing action 
a which pushes the environment in a new state s’; 

These variables can be packed in a so-called «transition» (s,a,r,s’). As shown in Figure A.4-26, a transition is 
described probabilistically as a distribution 𝑝(𝑠¢, 𝑟|𝑠, 𝑎). Which action is taken is, in the more general scenario, 
described probabilistically by a «policy» 𝜋(𝑎|𝑠). The policy can also be deterministic, in which case the 
selected action is a direct function of the state, 𝑎 = 𝑢(𝑠).  

 
Figure A.4-26: A transition in a Markov Decision Process 

At a given instant 𝑡, the environment will be in the state s(𝑡), the agent will perform the action a(𝑡), and 
consequently the agent will receive a reward 𝑟 = 𝑅(𝑡 + 1) and the environment will move to the new state 
s¢ = s(𝑡 + 1). An episode is defined as an iteration where the environment starts from a certain state, and the 
agent plays a certain number of actions until a certain condition is met to end the episode (e.g., the environment 
reaches a certain wanted state, the agent plays a given number of actions, etc..). 

The objective of the agent is to maximize the return, i.e., the sum of the future rewards:  

𝐺 =ª 𝑅(𝑡 + 𝜏)
Õ

 (A.4-58) 

or some other objective that is a function of the reward.  

In this context, one of the most known algorithms for RL is the so-called Q-Learning, and its neural network-
based variant, the deep Q-network (DQN) algorithm [MKS+13]. DQN solves the problem iteratively, playing 
several episodes and learning the action-state value function Q, using the Bellman equation [JKH+19]. The 
action-state value function estimates the average return that the agent will get at the end of the episode, by 
following the policy 𝜋(𝑎|𝑠) and performing action a(𝑡) when the environment is on state s(𝑡).  
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𝑄Ö(𝑠, 𝑎) = 𝐸{𝐺(𝑡)|𝑆(𝑡) = 𝑠,𝐴(𝑡) = 𝑎} (A.4-59) 

Once the action-state value function Q is known, the agent can directly derive its policy by simply taking in 
each state s(𝑡) the action a(𝑡) that maximizes 𝑄𝜋(𝑠, 𝑎).  

To apply the DQN solution to the MU-MIMO pairing problem, the proposed algorithm considers N users with 
a certain amount of data B to transmit in their buffer. The state of the system is described by the CQI, PMI 
and buffer status B of each user. The action performed by the agent is the selection of which users should be 
served in the next scheduling interval. Once a user is selected, the transmission to that user will be performed 
using the precoder indicated by the user PMI. To support MU-MIMO, the set of possible actions that the agent 
can take includes all possible users pairing. The maximum number of users that can be paired together by the 
agent can be limited to a value M ≤ N, which defines the maximum cluster size that can be scheduled together 
in a given scheduling interval. The reward is then computed based on the amount of data that is served, which 
depends on the CQI, PMI, and amount of data in the buffer of the selected user(s). Note that when multiple 
users are selected, the amount of data served to a selected user can be reduced compared to the amount that 
would have been granted if the user was served alone. This is due to power sharing between co-scheduled 
users, and possible mutual interference if the users’ transmission channels are not orthogonal. Nonetheless, the 
overall amount of data achieved by summing together all co-scheduled users could be higher than that granted 
by single user transmission, if the users are paired smartly. Since the achieved data rate is a measure of the 
quality of the pairing, this value has been linked to the reward. Moreover, in the proposed model, the reward 
initially computed based on the data rate was then reduced of a certain amount, to “pay” for the action taken, 
applying the concept of “living penalty”. In this way the agent will try to minimize the number of actions to 
reach its final goal. Selecting a user that has no data in the buffer is also considered a penalty, and it is therefore 
mapped to a negative reward. The final goal for the agent is to empty all users buffers as fast as possible. 
Reaching the goal is paid with a large reward, and ends one episode of “the game”. Once the action is taken, 
the state changes as the amount of data in the users buffers changes. CQI and PMI are assumed constant in an 
episode. 

Using the DQN approach, the algorithm learns the Q-function through a Deep Neural Network, associating to 
each state the Q-value of each possible action that can be taken.  

Simulation and results: the DQN model has been trained in a simple simulated scenario. In the simulator, N 
users are dropped randomly in the coverage area of a single Base Station, and pathloss is computed according 
to 3GPP specification TR38.901 [3GPP38901]. To simulate the effect of a random fast fading channels, for 
each user an ideal random channel matrix is generated with Rayleigh distributed channel coefficients. The 
channel matrix is then spatially correlated to simulate a La Placian distributed power angular spread around a 
randomly generated angle of arrival, as discussed in [CH08][YVT+14]. The detailed simulation parameters 
and assumptions are provided in Table A.4-15, Table A.4-16 and Table A.4-17. The proposed solution has 
been compared with results obtained assuming: 

• a round robin (RR) scheduling approach (without MU-MIMO support),  
• a greedy «genie» (GG) algorithm that at each scheduling step maximizes the served data-rate, 

computing the achievable data rate for all possible pairing of users, based on their full channel matrix 
and current buffer status, and selecting the pairing that maximizes the computed data rate at each 
scheduling step. 

The DQN based algorithm has been trained over 25.000 episodes assuming 5 users per cell and a maximum 
cluster size M=3 (i.e., pairing maximum 3 users). The algorithm has then been tested over 200 episodes, 
comparing its behaviour with the traditional round robin approach and the greedy genie solution. 

Figure A.4-27 shows the number of scheduling steps required to empty all users buffers with the different 
solutions under study. As it can be seen, DQN always outperforms the Round Robin solution, and its 
performance are close to the greedy genie algorithm, which however benefits from a complete channel 
knowledge, and can therefore be considered as an upper bound. More in detail, Figure A.4-28 provide the box 
plots (a) and cumulative distribution (b) of the obtained number of steps, showing that not only DRL is close 
in performance to the greedy genie algorithm, but these two approaches reduce the variability on the number 
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of required steps, determining a lower variance on the expected number of steps necessary to empty all users’ 
buffers.  

 
Figure A.4-27: Number of scheduling steps required to empty all users buffers with different algorithms 

 

  
(a) (b) 

Figure A.4-28: Box plot (a) and distribution (b) of the scheduling steps required to empty all users buffers with 
the different algorithms.  

Overall, as shown in Table 6-2, DQN solution is ~38% faster in emptying user buffers compared to Round 
Robin, and it is only slightly slower than the Greedy Genie solution.  

Taking into account the size of users’ buffers and the amount of time required to empty them, it is possible to 
evaluate the achieved user rate and overall cell data rate. This information is reported in Figure A.4-29 and 
Figure A.4-30 respectively, where probability density function (pdf) and cumulative distribution function 
(CDF) for the user rate and cell data rate are plotted. Note that since DRL is faster than round robin in emptying 
user buffers, the obtained data rate per user and on the overall cell rate are significantly higher, and close to 
those achievable with the Greedy Genie solution.  

By dividing the achieved cell data rate for the simulated bandwidth, it is possible to obtain the spectral 
efficiency achieved by the different algorithms, as summarized in Table 6-2. 

While the results here obtained are promising, it should be noted that the considered scenario is ideal, with no 
inter cell interference, and a fading channel with strong spatial directivity, which can be easily exploited by 
the precoding matrices available in the codebook. Further analyses are needed in a more realistic channel 
scenario to fully assess the quality of the proposed solution. Moreover, the proposed greedy genie algorithm, 
used as an upper bound for DQN, can still find a suboptimal solution, as at each step it selects the pairing that 
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maximize the rate for that step, without considering the optimization problem as a whole. Better results might 
be achieved with a solution that exhaustively searches the whole space of the existing pairing solutions 
throughout the whole episode. A recursive solution can be designed to achieve this task, but it is expected that 
an exhaustive search could be very demanding in terms of computational time. Being able to exploit the full 
channel knowledge, the Greedy Genie algorithm here proposed has been considered as a valid upper-bound 
for DQN, that allowed to obtain good results within reasonable simulation time. The implementation of an 
exhaustive search algorithm will be part of future activities. Finally, more advanced deep reinforcement 
learning techniques could be considered to solve this problem, in particular if the complexity is increased by 
considering more users or more complex simulation scenarios. Advantage actor critic (A2C) is for example a 
promising solution that could be explored in further evolutions of this study. 

  
(a) (b) 

Figure A.4-29: PDF (a) and CDF (b) of user data rate with the different algorithms (Round Robin – RR, Greedy 
Genie -GG and Deep Reinforcement Learning DRL). 

  
(a) (b) 

Figure A.4-30: PDF (a) and CDF (b) of cell data rate with the different algorithms. 

 
Table A.4-15: Detailed system parameters. 

Parameter Notation Value Notes 
General deployment and environment 

Number of BS   1  
Number of UEs  5  

Cell range Meters 1250 A large cell has been considered to 
have a reasonable CQI distribution 
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even in the absence of other cells 
interference 

Detailed deployment and architecture 

BSx number of TX 
antennas   

32 Planar array: with N1=8 elements 
per row and N2=2 elements per 
column, Polarization = 2 (cross-
polarized antenna elements) 

Scheduling period ms 1  
UEx speed  kmh 0 Static UEs 
UEx number of RX 
antennas   2 1 cross-polarized antenna element 

UE receiver 
architecture  MMSE  

UE Buffer Size Kbit 100  
Frequency range and bandwidth 

Frequency band  

FR1 and FR2 The actual carrier frequency does 
not impact on the proposed 
algorithm. In the current model it 
only impacts on the computation of 
propagation losses. 

Bandwidth MHz 10  
Details on Hardware parameters  
Ideal hardware  yes  

 
Table A.4-16: General Assumptions. 

Hardware impairment None 
Synchronization Ideal 

Channel model 
Channel is modelled with a Rayleigh distributed channel coefficients, with 
spatial correlation between the different channel coefficients introduced 
through a spatial correlation matrix, as discussed in [CH08] and [YVT+14]. 

Capacity Computation 
Formula 

SNR values obtained at the receiver are converted in data rates using 
Shannon law. Single layer transmission is assumed.  

CSI availability at 
transmitter 

Only partial CSI available, in the form of channel quality indicator and 
precoding matrix indicator. 

Precoding Codebook Precoding used for PMI computation based on 3GPP TS 38.214 v15.16.0 
[3GPP38214] Table 5.2.2.2.1-5, with N1=8, O1=1, N2=2, O2=1, one layer 

 
Table A.4-17:Assumptions for AI/ML-assisted transmissions. 

Type of the used 
AI/ML training 
method 

Reinforcement Learning 

Training  Offline 
‘Features’ and ‘labels’ 
for training the 
models  

Features: PMI, CQI, and Buffer status (in Kbit) per UE 
Labels: N/A 

Type of the AI model DQN (deep Q-learning network) 

Model architecture Neural network with one input layer of size 15, two hidden layers of size 23 and 
38, one output layer of size 25 

Loss function for 
training N/A 

Model deployment Transmitter 



Hexa-X-II   Deliverable D4.3 

Dissemination level: Public Page 207 / 218 

 

Training scheme Centralized 

 

A.4.7 Pilot assignment for D-MIMO 
This section provides further insights on the enabler “Pilot assignment for D-MIMO”, presented in Section 
6.3.4.  

The proposed method consists of two components: RL and GNN. GNN is utilized to approximate the group to 
which a given node belongs, while RL applies specific principles to the output of GNN in order to accomplish 
the objective.  The RL can be represented by the following Markov decision processes (MDP) elements as:   

A) State: The RL state for each node is specified as a vector 𝒔 = [𝑠v , 𝑖 ∈ 𝒱] ∈ {1,2, … , 𝐾, 0}𝒱, where 𝑠v = 𝑘 
represents that the node 𝑖 is assigned the k-th colour, 𝑠v = 0 denotes the state is initialized to all “deferred”, 
once all nodes have been assigned colours or reached the time limitation.  

B) Action: Given a state vector 𝒔, the action 𝒂 = [𝑎v: 𝑖 ∈ 𝒱] ∈ {1,2, … , 𝐾, 0} denotes the vertex I is assigned 
the colour k if 𝑎v = 𝑘 or deferred if 𝑎v = 0. Note that, the vertex that has been colored in previous stages 
will not be given any new action.  

C) Transition: The LCG colouring method can typically address both (K, r)-local colouring problems and K-
colouring problems. As a consequence of focusing exclusively on the colouring issue in this work, the 
transition of local colouring is disregarded. Additionally, the availability of local colouring ensures that 
the LCG method can be tailored to various objective functions and is extensible to other communication 
performance metrics. For colouring problem, the RL transition from state 𝒔� to 𝒔𝒕5𝟏 through two steps: 
update and clean-up-I. In the update step, the vertex is marked as deferred in the previous state is defined 
as the action, i.e., 𝑠v�51 = 𝑎v�, where t determines the previous state. The cleaning-up-I phase involves 
verifying the colouring rules. If a vertex fails to respect to the colouring rules, specifically by assigning 
the same colour to two adjacent vertices, the corresponding nodes are mapped to the “deferred” state. 

D) Reward: The reward in the approach consists of two parts: the cardinality reward 𝑅� , and the early-
terminated reward 𝑅� as 𝑅 = 𝑅� + 𝛽𝑅�. The cardinality reward from state 𝑠� to state 𝑠�51 can be defined 
as 

𝑅�(𝒔� , 𝒔�51) = ª 1
v∈𝒱2m)\𝒱2=

− ª 1
v∈𝒱2m)\𝒱2

, (A.4-60) 

 
The agent will be rewarded if more nodes are assigned in the new state, and it encourages the RL to extend 
the cardinality of the successfully assigned node set. To encourage the agent making the decision as soon 
as possible, the reward 𝑅� will be given when the process terminates at the time t in the given limitation B, 
thus the early-terminated reward can be written as  

To sum up, rewarding the agent for assigning additional nodes to the new state rewards the RL for 
increasing the cardinality of the node set that was effectively assigned. In order to encourage the agent to 
make the decision promptly, the early-terminated reward 𝑅� is provided upon the process terminating at 
time t within the specified limitation B. 

E) The model applies the Actor-Critic reinforcement learning based on graph convolutional neural networks. 
Both policy network 𝜋(𝒂|𝒔) and value network 𝑞(𝒔,𝒂)	consist of 4-layers GraphSAGE networks [HYL17] 
with GCN aggregator [KW17]. The n-th layer performs the following transformation on input H:  

𝑅� =
𝐵 − 𝑡
𝐵

. (A.4-61) 
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ℎ=(𝑯) = ReLU u𝑯𝑾1
(=) +𝑫2

1
.𝑩𝑫2

1
.𝑯𝑾.

(=)v, (A.4-62) 

where B and D represent the adjacency matrix and degree matrix, respectively, and 𝑾1
(=) and 𝑾.

(=) are the 
weights updated during the training process. The policy and evaluation of networks utilize softmax and graph 
read-out functions with sum pooling [XHL+19] instead of ReLU. The current iteration index of MDP and the 
sum of one-hot encoding of the neighbour’s state are applied as the neural network’s input.  

 
Figure A.4-31: Learning to code on graph structure figure. Figure (a) illustrates the structure neural network, 

and Figure (b) presents the concept clean up. 

A.4.8 AI-based PA-nonlinearity compensation 
The architecture of the neural network is described in Table A.4-18. 

 
Table A.4-18: The neural network specification. 

parameters setting 

Number of input neurons 3 

Number of output neurons log2(M) 

Number of hidden layers 3 

Number of neurons in each layer 64 

The activation function of each hidden layer ReLu 

The activation function of the output layer linear 

The assumptions regarding training of ANN de-mapper are summarized in Table A.4-19. 

 
Table A.4-19: The neural network training parameters. 

Parameters setting 

Number of Res 1.152e6 

Optimizer  Adam 

Mini batch size 1024 

Learning rate 0.0001 

Epochs  100 

UE and network capabilities: In this case, the network needs to be capable of PA post distortion and the UE also 
need to comply with a new specification allowing for increased in-band distortions. This would have impact on 
UE hardware implementations, 3GPP RAN4 in-band requirements and likely a new performance specification.  
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Training data generation: it is essential that the base station can collect training data from different UEs and 
that it knows that the collected data represents the UE operating modes expected in the field. To acquire the 
labels based on UE hardware operating conditions (not known to the base station) the UE could for example 
transmit a pseudo-random bitstream known to the base station (Figure A.4-32). The operating points of the UE 
Tx should still be diverse enough to cover the expected operation in the field. 

 

 
Figure A.4-32: Training data generation scheme. 

Simulation and results: The performance of the AI-empowered receiver against a legacy receiver with 
conventional de-mapper in presence of PA non-linearity and linear PA is compared in this section. Table A.4-20 
summarizes simulation assumptions. 

 
Table A.4-20: Simulation assumption for training and validation. 

Parameters Values 
Waveform DFT-s-OFDM 
FFT size 4096 
PA back off 4, 5, 6, 7, 8, 9 dB 
PA type CMOS (memoryless) [FHS23] 

GaN (memory) [FHS23] 
PRB 250 
Carrier bandwidth (MHz) 400 
Subcarrier spacing (Hz) 120e3 
Carrier frequency 30e9 
MCS table  MCS Table II 
BS antenna rows 4 
BS antenna columns 8 
Polarization 2 
MCS Link adaptation (10% target BLER) 

Operation point: Simulations are performed to measure the in-band distortions in term of EVM and out of 
band (OOB) distortions for different PA back-off values. Figure A.4-33 shows the power spectral density 
(PSD) of the transmitted signal and measured ACLR for different PA back-off values. The measured ACLR 
fulfils the ACLR requirements in FR2 which is 17 dB, hence, for the considered operating points, out of band 
emission requirements comply with the 3GPP RAN4 requirements in the existing standard. The simulated 
EVM values for different PA back-off values are shown in Figure A.4-34. Reasonable operating points for 
256QAM while still fulfilling EVM requirements in the current standard is around 8-9 dB backoff.  

Training data request

Pseudo-random bit 
stream in expected 
hardware operating 

conditions 
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Figure A.4-33: Power spectral density for different 
power amplifier back-off 

Figure A.4-34: Simulated EVM for different PA 
back-off 

Simulation scenarios: The advantage of the proposed method is investigated under four scenarios namely 
fixed transmitter, fixed throughput, fixed pathloss, and improved pathloss which are outlined in the following.  

Fixed transmit scenario: In this scenario, the UE transmit conditions (e.g., PA back-off) are fixed and 
performance is compared at a certain SNR in terms of throughput. The intention is to investigate what happens 
when turning on an AI/ML based receiver in the current operation of the transmitter. The findings are as 
follows.   

Reasonable operating modes for the PA while still fulfilling the current EVM requirements for 256QAM are 
estimated to be 8-9 dB backoff. Both operating points are shown in Figure A.4-35 to understand the benefits 
of simply turning on AI/ML in current receivers. The throughput gains at SNR=13 dB and 17 dB are shown 
in Table A.4-21. 

Table A.4-21: Throughput gain of the AI/ML 
receiver in fixed transmit scenario. 

Backoff [dB] SNR [dB] Gain [%] 

8 13 3 % 

17 14% 

9 13 6% 

17 2% 
 

 
 

Figure A.4-35: Throughput of the AI/ML receiver, 
and the legacy receiver for operating point comply 

with the standard requirements. 

 

 
 

Fixed pathloss scenario: In this case, power-limited scenario with fixed pathloss and fixed packet to be 
delivered are considered. The intention is to investigate, at a power-limited operation in an existing system, 
how can throughput performance be improved while energy efficiency increases. 

Simulated EVM [%]
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In a power-limited scenario, where the UE can increase the transmit output power with PA post distortion, 
given that the receiver can handle the increased distortion using the new feature, the throughput can increase. 
An example in Figure 4-36 shows 10% increase in throughput (taking the most promising backoff value for 
ML, out of some backoff candidates, see green circles). The impact on energy consumption for the class A 
power efficiency model is 13% reduction. As highlighted earlier, the assumption on the PA efficiency profile 
impacts gain/loss figures considerably. 

 

 
Figure A.4-36: Throughput versus SNR 

performance. 
Figure A.4-37: Coverage benefit versus throughput. 

 

 

Improved pathloss scenario: In this case considering a power-limited scenario, at a given fixed throughput, 
this study investigates how much coverage and energy efficiency can be improved. The intention is to 
investigate, at a power-limited operation in today’s system, how much can coverage and energy efficiency be 
improved while reaching the desired throughput. 

In addition to the <Fixed THP> evaluations on energy efficiency, in a power limited case, the PA post 
distortion can be used to increase “coverage” (the cell area where a certain throughput can be reached). Around 
2-3 dB in coverage gain can be seen in throughput ranges used by 256QAM, as shown in Figure 4-37. 

 

A.5 Flexible spectrum sharing and coexistence 
A.5.1 Assumptions and models to determine sharing possibilities 

Parameters and deployment considerations 

+10%

Mainly 64QAM used Mainly 256QAM used

3 dB

(BONo ML - BOML 05 dB) + (SNRNo ML - SNRML 05 dB) = 
(9           - 5               ) + (8.0          - 9.0              ) = 

à 4-1 = 3 dB (Improved coverage @ 1.5 Gbps)
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The following tables present the relevant system and deployment parameters for comparison, mainly derived 
from agreed technical and operational characteristics in the International Telecommunications Union (ITU) 
expert Working Party 5D (WP 5D) [ITU-CPM23]. 

Table A.5-22: Mobile network system and deployment-related parameters. 

Parameter Value 
BS Carrier frequency 3.85 GHz 
BS Channel bandwidth 100 MHz 
BS Antenna height 10 m 
BS Cell radius 400 m 
Sectorization 1 sector 
Frequency reuse 1 
BS TDD activity factor 75% 
Network loading factor 100% and 50% 
UE height 1.5 m 
Simultaneous UE in cell 3 per sector 
UE deployment Uniform and Rayleigh distributions 

 

Table A.5-23: Antenna and power characteristics for a base station (AAS). 

Parameter Value 
Antenna pattern  Refer to [ITU-M.2101] 
Element gain (incl. Ohmic loss) (dBi)  6.4 
Horizontal/vertical 3 dB beamwidth of single element (deg)  90º for H, 65º for V 
Horizontal/vertical front to back ratio (dB) 30 for both H/V 
Antenna polarization  Linear ±45º 
Antenna array configuration (row × column) * 8×8 and 4×4 
Horizontal/vertical radiating element spacing (wavelength) 0.5 for H, 0.7 for V 
Array Ohmic loss (dB) 2 
Conducted power (before Ohmic loss) per antenna element 
for 8×8 and 4×4 AAS** (dBm) 

5.5 (8×8) 
17.5 (4×4) 

BS max. coverage angle in the horizontal plane (deg) ±60 
BS vertical coverage range (deg) 90-120 
BS mechanical down-tilt (deg) 10 
Max. BS equivalent isotropic radiated power (EIRP) for 8×8 
and 4×4 AAS (dBm/100 MHz) 51 

* For the small/micro cell case, for example, 8×8 means there are 8 vertical and 8 horizontal radiating elements. 

** For example, for an 8×8 AAS, the conducted power per element assumes 8×8×2 elements (i.e., power per 
H/V polarized element). 

The FSS ES parameters in this analysis adhere to ITU expert group WP 4A's agreed technical and operational 
characteristics [ITU-S.2368]. Additional parameters are based on deployments in Germany, such as Fuchsstadt 
[Int23] and DLR [DLR23]. The following tables present the FSS ES parameters and the FSS protection criteria. 
The latter pertain to the time-associated availability of FSS links. Monte Carlo sharing studies may involve 
additional considerations, like geographical locations or deployment domains, which don't vary over time. 
Thus, percentages should be understood in contexts beyond time, such as location and probability. 

Table A.5-24: FSS system and deployment-related parameters. 

Parameter Value 
Antenna diameter (m) 4.8 (DLR) and 32 (Fuchsstadt) 
Peak antenna gain (dBi)  44 (DLR) and 61 (Fuchsstadt) 
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Antenna pattern Based on Rec. ITU-R S.465 [ITU-S.465] and on a more 
realistic pattern based on Bessel functions [Orf16] 

Receiving system noise 
temperature 

120 K for small antennas (1.2-3 m) 
70 K for large antennas (4.5 metres and above) 

Min. antenna elevation 
angle (degrees) 

16.1 (DLR) and 8.4 (Fuchsstadt) 

Antenna height (m) 14 (DLR) and 20 (Fuchsstadt) 
 

Table A.5-25: FSS ES Protection Criteria. 

Frequency Ranges I/N Criteria (dB) Percentage of time for which the 
I/N value could be exceeded (%) 

3 600-3 800 MHz 
(space-to-Earth) −10.5 20% 

For this analysis, the interference from a single BS is assessed. Particularly, the single BS is always facing the 
FSS ES to account for the worst-case. Figure A.5-38 shows an example of the BS and a FSS ES when they are 
positioned facing each other with a separation distance of 3 km. In each snapshot of the Monte Carlo 
simulation, 3 UEs are deployed within each BS sector following a uniform or Rayleigh distribution as shown 
in Figure A.5-39. It is noted that a Rayleigh distribution is deemed more appropriate for some networks, e.g., 
local networks, provided that these networks are deployed where users are expected to remain in the local 
network cell, rather than moving between different cells as in public mobile networks. Furthermore, the BS 
transmit power is assumed to be split equally among its UEs, meaning that the transmit power for each UE is 
10log10(1/3) = -4.77 dB lower than the total transmit power of the BS. Additionally, the FSS ESs in Table 
A.5-24 are located in 48.086° N, 11.281° E (DLR site), and 50.119° N, 9.924° E (Fuchsstadt site). For 
simplicity, a common latitude of 49° is used for both sites. 

 
Figure A.5-38: Deployment comprising a single FSS ES and a single BS. 

 
Figure A.5-39: UE deployment: (a) uniform distribution and (b) Rayleigh distribution. 

Propagation: The Recommendation [ITU-P.452] is used in this analysis to model the basic propagation loss 
between stations on the surface of the Earth as specified by the ITU-R WP 3K and 3M. A smooth earth surface 
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is assumed. Furthermore, to extend ITU-R P.452 model time percentage (Tpc) range to 0-100%, the ITU-R 
study group 3 (SG 3) guidance suggests that when Tpc > 50%, the basic transmission losses remain the same 
as when Tpc = 50. Hence, a random variable with a uniform distribution between 0-100% is applied for Tpc. 

Additionally, due to the lack of exact information regarding vegetation/forest areas and other obstacles along 
the propagation path, the use of the clutter loss model in Recommendation [ITU-P.2108] is a good compromise 
to account for the additional attenuation due to vegetation and/or other objects. Thus, the clutter losses for 
terrestrial paths are calculated in accordance with Rec. ITU-R P.2108-1 using a fixed percentage of locations 
equal to 50% on at least one of the ends of the propagation path. It is noted that this Recommendation indicates 
that statistical models are to be used when precise knowledge of the radio path is not known such as the width 
of streets, heights of buildings, and depth of vegetation. 

Parabolic reflector radiation pattern: In addition to the model in [ITU-S.465], the following normalized 
antenna gain pattern is used to model the FSS ES antenna pattern. This pattern is associated with a standard 
reflector antenna featuring a circular aperture [Orf16]: 

1 for 𝜃 = 1 

4 �
𝐽1(𝑘 ∙ 𝑎 sin𝜃)
𝑘 ∙ 𝑎	 sin𝜃

�
.

 
for 0 < |𝜃| ≤

90° 

4 �
𝐽1(𝑘 ∙ 𝑎 sin 90°)
𝑘 ∙ 𝑎	 sin 90°

�
.

 
for 90° < |𝜃| 

  

(A.5-63) 

where J1(x) represents the Bessel function of the first kind and first order, θ is the angle measured from the 
antenna's main beam, a denotes the radius of the antenna, and k = 2pf/c is the wave number where f is the 
frequency and c is the speed of light in vacuum. It is noted that k∙a represents the number of wavelengths on 
the circumference of the aperture and remains constant regardless of the operating frequency. 

As example, Figure A.5-40 shows the gain pattern cuts of the DLR and Fuchsstadt antennas along with fitting 
masks: 

  
Figure A.5-40: Gain pattern cut of (a) DLR and (b) Fuchsstadt antennas at 3.8 GHz. 

The fitting masks depicted in Figure A.5-40 are used in the Monte Carlo simulations. The gain of the DLR and 
Fuchsstadt antennas towards horizon are around -3.64 dB and -3.26 dB respectively at their corresponding 
minimum elevation angles. Lastly, the validity of the radiation patterns is assessed by computing the total 
integrated gain (TIG) as it should be equal to the efficiency of the antennas: 

(a) (b)
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The obtained TIG values are -1.716 dB and -1.212 dB for the DLR and Fuchsstadt antennas respectively. These 
values correspond to efficiencies of 67.3% and 75.6%, which are considered reasonable provided their sizes. 

A.5.2 Spectrum sharing between 6G and FSS UL in the centimetric range 
 

Table A.5-26: Selection of antenna and deployment-related parameters for IMT. 

 6425-10500 MHz 24.25-33.4 GHz 
Deployment type Macro urban Urban hotspot 
Antenna pattern Refer to Recommendation ITU-R 

M.2101 Annex 1, section 5 
Refer to Recommendation ITU-R 
M.2101 Annex 1, section 5 

Element gain (dBi) 5.5 5 
Antenna array configuration 
(row x column) 

16 x 8 elements 8 x 8 elements 

Horizontal/Vertical radiating 
element spacing 

0.5 of wavelength  
for H, 0.5 of wavelength for V 

0.5 of wavelength for both H/V 

Array Ohmic loss (dB) 2 3 
Conducted power (before 
Ohmic loss) per antenna 
element (dBm/200 MHz) 

22 10 

Mechanical downtilt (degrees) 10 10 
Antenna height above ground 
level (m) 

18 6 

 

Table A.5-27: Satellite parameters 

 Starlink One Web 
Average orbit height (km) 550 1200 
Antenna gain (dBi) 32 32 
Bandwidth (MHz) 200 200 
Nadir footprint diameter (km) 43 94 
Active BS in the Nadir footprint 430 850 

A.5.3 TN-NTN spectrum sharing in S-Band: parameters for co-existence studies 
The serving TN BS is assumed to be the nearest BS to the TN user and serves the TN UE in the DL direction. 
It is assumed that the same frequency band is shared among all TN BS and with the NTN that provides coverage 
over the TN cluster. This causes co-channel interference at the TN UE’s reception. 

The satellite transmit power, cell radius, and maximum antenna gain are 𝑝@ =	46 dBm, 25 km, and 30 dBi, 
respectively. The main lobe gain of the BS antennas is assumed to be 17 dBi. The BS transmit power is assumed 
to be 𝑝@ =	46 dBm. The altitude is set to {200, 600, 1200} km, unless stated otherwise. Inter-site distances for 
TN network are assumed to be 0.75 km and 7.5 km for urban and rural areas, respectively. The number of BS 
on each TN cluster is assumed to be 19. The operating frequency and bandwidth are set to be 2 GHz and 20 
MHz, respectively. 

A.5.4 Sub-THz access: simulation assumptions 
The following list gives an overview on the general simulation setup with a few used assumptions: 

• Focus is on the simulation of the sub-THz access scheme, i.e., beam pairing as well as resource assignment 
and interference in dynamic scenarios. The omni-directional part is not modelled. Shared data is directly 
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transferred between the entities. Goal is to check under which circumstances the access scheme works 
properly and what key performance indicators can be achieved. 

• One of the simulated use cases is a train station scenario. A lot of people leave a train, connect to the sub-
THz network and transfer data while moving through a corridor. Only a limited amount of time is available 
to transfer the data and the beam pairing is demanding. 

• Directed beams as well as beam steering (antenna array) is simulated; antenna array dimensions and output 
power can be varied. 

• Line-of-sight paths are handled. Reflections are ignored. Multiple-input multiple-output transmission and 
polarization effects are not included.  

• Communication bandwidth, carrier frequency, modulation scheme can be varied.  
• Data rate is defined by bandwidth, modulation, and duration; no dynamic selection of transmission 

parameters beside TDD patterns are included. 
• Physical layer and layer 2, e.g., coding, HARQ, medium access control, RLC, are not simulated; only time 

and resources for a transmission/reception are defined and checked against the required and achieved 
SINR. 

A.5.5 Risk-informed random access: simulation assumptions 
Table A.5-28 shows the assumed parameters taken for the UEs in the simulation. The properties of antennas, 
UEs, and the base station can be set using the built-in settings of the Wireless InSite. A pre-defined directive 
antenna model is assumed for the base station and omnidirectional antennas are used for UEs. 

 
Table A.5-28: Satellite parameters. 

 

A.5.6 Inclusive radio interface via TN/NTN enhancements 
Reduction of NTN HO signalling overhead 

To examine if there is really benefit for overhead reduction in signalling of HO commands by using CS, this 
work considers a simplified model of the two possible ways of delivering the common information and it can 
be seen that there exists a trade-off when using dedicated versus CS [R2-2311212]: 

• Dedicated: It can be assumed an amount of X resources, or physical resource blocks (PRB) are used in 
average per HO command and n HO commands are required per second for each UE in cell. In that case, 
the average resource usage can be calculated as:  n*X PRB/s. 

• Common: Here, this can consider Y PRB per CS occurrence and m CS occurrences per second for the 
group of UE. In general, Y is to be expected larger than X, as it will need to correspond at least to the 
maximum of PRB per HO needed for a UE in the group; link adaptation cannot be optimized for all UE in 
the group. For example, in case CS is ensured by broadcast signalling (i.e., CS to all UEs in cell), Y would 
correspond to cell edge conditions so that all UE in the cell would be able to decode the common 
information. 
Regarding m, a) in case CS is ensured by broadcast, it would need to be large enough to ensure connected 
UEs always have an opportunity to acquire it before HO, but small enough to not compromise the expected 
signalling gain; b) in case CS is ensured by group signalling (i.e., CS to defined subset group of UE within 
the cell), it can be assumed to be n/S, where S define the average group size. In that latter case, one should 
also take into account additional signalling (G) required for groups configuration. 
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In general, the average resource usage with CS can be calculated as:  m*Y (+G) PRB/s. 

It can be seen that it is questionable whether CS is always a good solution for HO signalling overhead 
reduction, also considering the possibility of extra feedback required in UL for network to ensure that such 
transmission was effectively received by the UE. 

QoS aware omission of HO common information: It is also possible to omit HO common information in 
HO command message and UE acquires some of the required parameters while in source cell, during 
source/target overlap time. This is beneficial to reduce interruption time in case some parameters can be 
available (and also within valid duration) from source cell through other means during overlap time. For 
example, in 3GPP Rel.17/Rel.18, an important signalling is “target cell NTN-config” information element (IE) 
which bears the whole ephemeris and common TA information. This IE can be carried in HO/CHO message, 
where it is possible that its validity expires way before HO is executed.  But this IE can be also carried from a 
more frequent common signalling message, SIB19. To reduce signalling overhead in HO/CHO, network 
should be allowed to omit NTN-config in HO/CHO message while ensuring that the UE would benefit from a 
more recent NTN-config received "for free" from a source cell SIB19 update (see Figure A.5-41). To ensure 
that the relevant HO information is up to date for the UE (e.g., aligned epoch/validity duration of serving and 
target cell and valid NTN-config at the time of HO/CHO execution) the UE may have to read/receive the 
regular CS (e.g., SIB19) more often. This could be requested by the network through an indication during UE 
configuration. 

 
Figure A.5-41: Example (5G standard) of acquiring HO parameters in source cell and omitting common 

information in HO command message. UE uses a more recent NTN-config from a source cell SIB19 update 
instead of a CHO message with expired validity before CHO execution. 

Cell change without HO 

For the PCI unchanged solution, the following drawbacks can be observed [R2-2311223]: 

• Questionable interruption time reduction, as target cell needs to be synchronized after leaving source cell. 
In 5G, interruption time at HO, defined as the time between HO command and start of random-access 
transmission to new cell (not including the RRC procedure delay), can be modelled as [38.133]: 

Tinterrupt = Tsearch + TIU + Tprocessing  + T∆ + Tmargin  ms 
where Tsearch is the time required to search the target cell when the HO command is received by the UE, T∆ 
is time for fine time tracking and acquiring full timing information of the target cell, Tprocessing is the time 
for UE processing (e.g., RF/baseband re-tuning), Tmargin is the time for post-processing of the SSB, TIU 
relates to the interruption uncertainty in acquiring the first available physical random access channel 
(PRACH) occasion in the target cell, and Trs is the periodicity of the SSB-based measurement timing 
configuration periodicity of the target cell,  a time window introduced to notify the UE about the periodicity 
and the timing of the SSB that the UE must use for cell quality measurements. 
The general assumption in [38.133] test parameters is TIU = Tprocessing = T∆ = Tsearch = Trs = 20 ms, and Tmargin 

= 2ms. Without the need for Tprocessing in case HO procedure for UE is avoided, and considering that the 
cell is known (i.e., Tsearch = 0), the resulted interruption time should be Tinterrupt = 62ms. PCI unchanged 
solution although removes Tprocessing, it adds back Tsearch = 20ms, resulting into similar overall interruption 
time, in case of hard satellite switch, which is a common practical case. 

CHO Msg 
Target NTN-Config 
Validity Duration 

CHO ExecSIB19
Target Epoch 

SFN/SF

CHO message
Target Epoch 

SFN/SF

CHO Msg SIB19 SIB19

SIB19 
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• Impact on other UEs: There can be UEs in the system whose mechanism for mobility mostly relies on soft 
switch, with a temporary overlap between source and target cells (e.g., legacy Rel-17 NTN UEs). UEs 
deployed on such “unchanged PCI” network, requiring hard switch, would suffer impact on HO 
interruption, as they will have an additional penalty of Tsearch = 20ms, within the benefit of removing 
Tprocessing, leading to Tinterrupt = 82ms compared to existing example above. 
Another possible concern is the behaviour of legacy UEs in case of same cell HO, traditionally used for, 
e.g., key refresh, not for resynchronizing the cell. Normally, for the hard service link switch scenario, 
legacy UE shall use a HO (reconfiguration with sync) with different PCI. The target cell is unknown and 
would be synchronized from scratch by the UE. However, if deployed in “unchanged PCI” network, the 
hard switch scenario would need a same cell HO: reconfiguration with sync, with same PCI. In such case, 
the target cell is very well known. A sensible UE implementation would use this information (just as for a 
HO to another known cell). Hence, the scenario is different, and it is unclear to which extent this would 
work without issues for legacy UEs. 
Finally, if other UEs do not support time-based CHO, a HO message would have to be sent. Compared to 
the hard service link switch scenario with different PCI, there is an additional constraint when PCI is 
unchanged: as long as the service link switch has not occurred, source cell synchronization messages (i.e., 
SSB in NR) are sent. Thus, the HO message would need to be sent at the very last time as there should be 
no source cell SSB after the HO message and before the switch. Otherwise, there is a risk that the UE just 
sync again to the source cell (see Figure A.5-42). 

 
Figure A.5-42: (a) Issue of source cell resync; (b) Implementation constraint. 

• Additional ephemeris / common TA provisioning. 
Although the unchanged PCI solution involves no HO command, there are main configuration parameters 
that are changed at the time of the switch (e.g., ephemeris and common TA parameter, included in NTN-
config signalling for 5G). The UE needs those parameters to (again) access the cell. These could be read 
from existing common signalling (e.g., SIB19) in target cell, after the service link switch (thus, with 
increased interruption time) or from source cell new common signalling/mechanism (thus, could not be 
used by legacy UEs). 

 

 


