Hexa-X-II

Foundations on 6G Smart Network Management and Orchestration Enablers.

6G series workshop by Hexa-X-II

Ignacio Labrador Pavón, Atos

hexa-x-ii.eu

Slides: Giada Landi (Nextworks)

Hexa-X-II Smart Network M&O Enablers

Task 6.1: Programmability, flexible network configuration and monitoring

Programmability, flexible network configuration and monitoring

Enabler #1 - Programmable Flexible Network Configuration

Enabler #2 - Programmable network monitoring and telemetry

- Cloud-native Software Defined Networking (SDN) controller for programmable network configuration.
- APIs enable standard ways to interact with the network.
- Cloud-based (SDN) controller for network automation.

- Real-time data for faster response to security and performance issues.
- Enabler for programable optimization across the whole network.
- Support for multiple monitoring protocols (NETCONF, REST, gRPC, gNMI, SNMP)

Trustworthy management and integration fabric

Enabler #3 - Integration Fabric

Enabler #4 - Trustworthy 3rd party management

- Re-factoring the connectivity of today's capabilities, enabling cross-domain connectivity of loosely coupled and fine-grained services
- Adopting SBMA for interconnection of Hexa-X-II M&O systems, enabling more programmability and adopting a cloud-native paradigm.
- Service bus aligned with ETSI ZSM concept of crossdomain integration fabric.

- Resource controllability separation track: provision of segregated yet customized management spaces to different 3rd parties
- User-centric network management track: 3rd party subscribers with personalized service experience, while being compliant with regulation in force.
- SLA enforcement track: covers SLA translation, assurance and verifiability from 3rd parties. SLA includes:
 - Key Performance Indicators (KPIs)
 - Key Value Indicators (KVIs)
 - Trust Level Agreement (TLA) components

Inter-domain and inter-computing management

Enabler #5 - Multi-cloud management mechanisms

- Hierarchical decision-making solutions
- Interaction between network manager and Cloud Management Platform (CMP) or pure container orchestration solution (K8s)
- AI/ML for optimal resource allocation, load-balancing, predicting and preventing disruptions
- Distributed Ledger Technology (DLT) for multi-domain federation

Enabler #6 - Orchestration mechanisms for the computing continuum

- Different types of synergies: among multiple cloud/network providers/MNO, among cloud application and network provider/MNO, among multiple management agents in a single provider
- Integration of the Extreme-Edge domain as part of the 6G cloud continuum.
- Enhance orchestration in synergy with network SLAs, taking advantage of ML mechanisms and data fusion of observability/telemetry signals to assist orchestration

Sustainable and trustworthy AI/ML-based control

Enabler #7 - Sustainable AI/ML-based control

- Intent-based management including energy saving goals and translating SLA requirements with AI/ML algorithms
- AI/ML algorithms for optimal resource allocation (target performance, minimal energy) adaptive to environment and network state
- Sustainable MLOps to prevent ML training wasting more energy than saved in the network
- Federating AI/ML mechanisms for network management considering their energy footprint

Optimal resource allocation (target performance, minimal energy) adaptive to environment and network state

Sustainable and trustworthy AI/ML-based control

Enabler #8 - Trustworthy AI/ML-based control

Trustworthy AI/ML function

- Analyze vulnerability of AI/ML-driven systems against adversarial attacks and applicability of model regularization, defensive distillation and adversarial training in the mitigation of adversarial attacks on the management plane
- Use differential privacy, homomorphic encryption, secure multi-party computation or federated learning to minimize leakage of personal and sensitive data.
- Apply Explainable AI (XAI) techniques in AI-driven network management procedures to generate a human-understandable, interpretable, and transparent answer for a behavior.

Enabler #9 - Network Digital Twins

- Definition of control and monitoring flows for the generation and update of the twin
- Use of Graph Neural Networks (GNN) to create network models used as Digital Twins

Real-time Zero-touch control loop automation

Enabler #9 - Zero-touch multiple closed loop coordination

Extreme Edge Edge Cloud Coordination Coordination Service Layer Service Layer Service Layer Delegation elegation Delegation Network Layer Network Layer Network Layer Infrastructure Infrastructure Infrastructure Laver Laver Laver Service Layer 0 Delegation Network Layer Ο Infrastructure Layer О Extreme Edge Cloud Edge Coordination Coordination

- Different coordination models: peer-to-peer vs hierarchical models of multiple CLs
- Conflict detection, mitigation and resolution
- Delegation & escalation through the CL hierarchy
- Knowledge sharing among multiple CLs

Enabler #10 - Zero-touch closed loop governance

- Automation in provisioning, configuration, and operation of Multi-dimensional CLs for mobile network automation, with different time granularities and within different domain scopes and architecture layers
- AI/ML models for prediction within CL
- ML sandbox domains with Network Digital Twins models applied to CLs for preliminary decision validation

Orchestrator

HEXA-X-II.EU // У in 🕒

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101095759.