Security Controls and Their Interface

Hexa-X-II Workshop on Enablers for 6G System

Diego López, Antonio Pastor

hexa-x-ii.eu

On the Nature of Security/Privacy/Resilience Elements

- Not necessarily intended to provide a new, differential functionality
 - But to address specific threats
 - Providing mechanisms to detect them and to mitigate their impact
 - In our case, associated to the 6G delta
- Hexa-X-II has identified threat families the project intend to address
 - Architectural trends
 - Pervasive use of Al
 - Trust infrastructures
 - Physical layer security
- Mechanisms to detect threats and to mitigate their impact
 - Provided as <u>security controls</u>
 - Components acting as safeguards, detectors, countermeasures...
 - Enablers for enablers, if you like
 - Wrapped, when required, by specific enablers
 - Or by orchestration modules, operating As-a-Service

• Key trends with high security impact

- The NoN (Network of Networks) concept
 - Integration of different NSPs, with limited information exchange
- The Cloud Continuum
 - Isolation, observability, transitivity...
- Disaggregation, especially in RAN
 - Expansion of the attack surfaces
- Addressing these issues by
 - Formal specifications and formal security proofs
 - Formal descriptions of experiments (for NDT so far)
 - Image attestation
 - Verify how CNFs can be deployed as Confidential Computing applications
 - Analyze, understand and quantify performance impact(s)
 - Topology attestation
 - Protocols and methods for path verification: packet extensions and in-band OAM
 - Performance impact(s) on data and control planes
 - Potential convergence for further consideration

Architectural Trends

Pervasive (Trustworthy) Al

- AI security implications
 - Attack surface on models and (especially) data
 - Pervasiveness increases impact and complicates detection
 - Go beyond black-box AI, and move towards explainable AI (XAI)
 - AI privacy implications
 - Avoid exposure of sensitive data of any nature, at any stage
- Simulation environment for privacy-enhanced federated learning
 - Privacy attacks to aggregation flows
 - Poisoning attacks to secure aggregation
 - Applicability of partial encryption in local model updates
 - Explore the required balances
 - Privacy and security
 - Security and performance

Learning

Homomorphic Encryption

Trust Infrastructures

- Consider issues regarding how trust on network services is established
 - Not strictly 6G issues, but to be addressed in the 6G development timeframe
 - Going beyond traditional assurance
 - Making trustworthiness part of service levels, aligned with intent
- Address the transition in cryptography
 - Agility, allowing a seamless evolution
 - Pliability, adapting to management best practices
- Distributed ledgers
 - As support for *smart contracts*, enforcing agreements
- Experiments in NDT environments
 - With new crypto models
 - PQC and QKD applicability, impact an convergence
 - QKD applicability
 - Management and performance impact on different planes
- Validating the Hexa-X LoTAF approach
 - As a continuation of the work in Hexa-X

Physical Layer Security

- Extending the threat analysis and mitigation mechanisms to the physical layer
- Context awareness
 - Secret key generation adapted to channel measurements
 - Environment modifications: e.g. blocking LoS, reconfigurable reflectors...
- Security and privacy issues in JCAS
 - CIA (Confidentiality, Integrity, and Availability) of the sensing data flows
 - Applicability and scope of consent mechanisms
 - Threat analysis, applying well-known threat modeling framework for security and privacy
- Sources of physical anomalies
 - Understanding, detection, classification, and localization of jammers, beyond SotA
 - Comparison between expected (DT) and measured RSS at the sensing units
 - Characterization: Jammers, malfunctioning devices, misconfigured neighbor NPNs...
 - Deception techniques to enhance physical security

Security Control Interface - SCI

- A (significant) part of these controls will be used by enablers
 - As a result of design patterns
 - As an evolution of security patterns
- Based on a few basic principles
 - General loosely-coupled model, compatible with the Hexa-X-II integration fabric
 - API-oriented (not necessarily REST in all cases, like crypto)
- Identifying the security controls to be considered
 - Use experiments to characterize these security controls
- And the interface to use them
 - Based on ZSM 014, about to be published by ETSI ISG ZSM
 - Defines a set of security interfaces well aligned with the above principles
 - Validate and extend it as required

HEXA-X-II.EU // У in 🕒

Co-funded by the European

Hexa-X-II project has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation programme under Grant Agreement No 101095759.