6G series workshop from Hexa-X-II

Radio Design and Spectrum Access Requirements and Key Enablers for 6G Evolution

Ahmad Nimr [TU Dresden] (WP4 co-lead, with Nurul Mahmood [University of Oulu])

Hexa-X-II

hexa-x-ii.eu

Outline

- Radio design concept
- Overview of HEXA-X-II WP4
- Radio scenarios
 - Selected use cases
 - Deployment scenarios
 - Performance metrics
- Overview of holistic design framework and enablers
 - Architectural enabler
 - Signal processing
 - Flexible spectrum access solutions
 - KVIs focused solutions
 - Simulation and modelling tools
- Proof of concepts

Radio design concept

Radio design enablers: technologies and tools that allow the development and implementation of radio systems to achieve the goals and overcome the constraints

- New spectrum allocation (e.g. sub-THz)
- Technologies that improve the resource usage for multiple functionalities (e.g. Joint communication and sensing)
- Advanced computational tools (e.g. AI/ML)
- Mechanisms for efficient spectrum sharing
- Technologies to mitigate the impact of environment (e.g. RIS)
- Simulation and modelling tools
- Solutions for enhancing trustworthiness
- Prototyping platforms
- Energy efficient techniques
- Novel material and HW components

Note: the list of constraints is not exhaustive.

WP4: Radio evolution and innovation

- Channel modelling
- Waveforms and modulations
- Massive MIMO
- Distributed MIMO
- Link-level simulator

- Al solutions for HW impairment compensation, resource allocation, channel prediction, beamforming, ..
- Modulation and coding
- D-MIMO transmission
- RIS-assisted transmission

Joint communications and sensing

- Sensing architectures
- Waveforms optimization
- Resource allocation and protocols
- Security, resilience and crossfunctional benefits

- Spectrum sharing and coexistence
- Multi-rat spectrum sharing
- Low-latency random access
- Risk-informed random access

Sustainable, trustworthy and inclusive holistic radio design

• Flexible design

• Inclusive interface

• Sustainable solutions

• Trustworthy solutions

Selected use cases and defined radio scenarios

6G Radio scenarios KPIs

• Derived by analysing the service requirements of representative use cases and mapping to radio requirements

Radio scenario	Use cases	ITU usage scenarios	Data rate	Reliability	Latency	Connection density	Coverage	Sensing-related capabilities
Extreme coverage	E-health for all	Ubiquitous connectivity	Low Medium < 1 Gbit/s	Variable	Variable	Variable	Ultra-wide Extreme-wide Availability (99.99%- 99.999999%)	Variable
Extreme data rate	Digital twins for manufacturing	Artificial intelligence and communication Immersive communication	Ultra-high Extreme-high (10-100 Gbit/s)	Variable	Variable	Low Medium <10⁴ device/km²	Local	Variable
Extreme connection density	Fully merged cyber- physical worlds and merged reality game/work Immersive smart cities & integrated micro-networks for smart cities	Immersive communication Massive communication	Medium High < 10 Gbit/s	Variable	Variable	Ultra-high Extreme-high (10 ⁶⁻ 10 ⁸) device/km²	Variable	Variable
Extreme low latency and high reliability	Interacting and cooperative mobile robots Infrastructure-less network extensions and embedded networks	Hyper reliable and low- latency communication Integrated sensing and communication	Low < 10 Mbit/s	Ultra-high Extreme- high (99.999%- 99.99999%)	Ultra-low Extreme- low (0.1-10) ms	Variable	Local	Ultra-high Positioning accuracy (0.1-1) cm

6G Radio scenarios parameters

• Sub-scenarios can be defined by different combinations of scenario parameters

Radio scenario	Use case	Environment	Deployment option	Radio devices	Mobility	Frequency	Example
Extreme coverage	E-health for all	Mobile indoor Public indoor Outdoor (urban, suburban, rural)	Long range Short range Fixed/temporary Mobile infrastructure TN/NTN integration	Enhanced 5G (mMTC, eMBB) devices Energy neutral devices	Static Low, Medium High Very-high Ultra-high	Sub-GHz Sub-6 GHz 7-15 GHz Satellite frequency ranges	Remote area Rural area
Extreme data rate	Digital twins for manufacturing	Controlled and semi-controlled indoor and outdoor	Small cell D2D Sensor network with a gate way Embedded network	Access points for backhaul Gateway for sensors Local devices (sensors, actuators)	Static Low mobility Controlled mobility	mmWave or sub-THz Mixed and unlicensed for local connections	ron rund Lata certre Cata cer
Extreme connection density	Fully merged cyber-physical worlds	Urban indoor/outdoor with high density of users High-rise	High density of cells Macro cell Micro cell	Reliable high data rate with bounded latency devices	Static Low Medium	mmWave 7-15 GHz high bandwidth	
Extreme low latency and high reliability	Interacting and cooperative mobile robots	Indoor Embedded network	Small cell On premises infrastructure Sensor network	High reliability & low latency devices	Static Low mobility Controlled mobility	Private frequency Sub-GHz Sub-6 GHz 7-15 GHz mmWave, sub- THz for sensing	

6G Radio performance metrics

Air interface communication requirements	Performance metrics		
Data rate	Peak data rate, throughout, capacity, spectral efficacy, sum rate, average rate, packet rate.		
Coverage	Range (spatial separation distance), beamwidth, signal-to-noise ratio (SNR), coverage probability, outage probability.		
Air interface latency	The time needed to transmit and receive L2 packet successfully.		
Air interface reliability	Bit error rate (BER), frame error rate (FER), block error rate (BLER), symbol error rate (SER), normalized mean square error (NMSE).		
Radio	Porformance metrice		
sensing requirements	Performance metrics		
sensing requirements Location/sensing accuracy	Error norm value (distance between true and estimated value) corresponding to a certain percentile of the location error norm.		
sensing requirements Location/sensing accuracy Sensing latency	Error norm value (distance between true and estimated value) corresponding to a certain percentile of the location error norm. The time between initialization of sensing/localisation procedure and acquiring localisation/sensing estimate.		
sensing requirementsLocation/sensing accuracySensing latencyOrientation accuracy	Error norm value (distance between true and estimated value) corresponding to a certain percentile of the location error norm. The time between initialization of sensing/localisation procedure and acquiring localisation/sensing estimate. The orientation error norm value corresponding to a certain percentile (e.g., 90%, 99%) of the orientation error norm.		
sensing requirementsLocation/sensing accuracySensing latencyOrientation accuracyLocation coverage	 Error norm value (distance between true and estimated value) corresponding to a certain percentile of the location error norm. The time between initialization of sensing/localisation procedure and acquiring localisation/sensing estimate. The orientation error norm value corresponding to a certain percentile (e.g., 90%, 99%) of the orientation error norm. The area or volume or fraction of a space in which the localization error is below a certain limit. 		
sensing requirementsLocation/sensing accuracySensing latencyOrientation accuracyLocation coverageSensing resolution	 Error norm value (distance between true and estimated value) corresponding to a certain percentile of the location error norm. The time between initialization of sensing/localisation procedure and acquiring localisation/sensing estimate. The orientation error norm value corresponding to a certain percentile (e.g., 90%, 99%) of the orientation error norm. The area or volume or fraction of a space in which the localization error is below a certain limit. The smallest difference in a dimension (e.g., range, angle, Doppler) between objects to have measurably different values. 		

• General performance requirements

Implementation and operation	Performance metrics		
Energy efficiency	Ratio of output power to the total consumed power, energy consumption to achieve certain performance goal (such as energy required to transfer a bit).		
Complexity	Amount of hardware resources, computational complexity of algorithms.		
Cost	Cost of design, implementation, deployment, and operation.		

• Design value requirements

Value requirements	Performance metrics
Inclusiveness	Coverage, global standard, proper number of manageable interfaces, affordable devices.
Trustworthiness	Reliability, security, resilience, integrity.
Sustainability	Values and needs of the end-users, energy consumption, life cycle assessment (LCA) of material, electromagnetic field (EMF) exposure.

Holistic radio design framework

Holistic radio design: Considers the entire radio system as a whole, and the interdependencies between different elements.

Architecture and deployment

Topics

Massive MIMO schemes and architectures

Flexible transceiver architecture

Distributed MIMO and RIS-assisted transmission

- Distributed massive MIMO for machine type communication
- RIS-assisted IAB
- RIS control procedure, interface and integration
- D-MIMO assisted with RIS
- Decentralized transmission
- One-bit ADC for multi-cell setup

Massive MIMO schemes and architectures

- Hybrid analogue-digital architectures
- Fully digital architectures with low-resolution
 ADCs/DACs

Flexible transceiver architecture

• Multiband, reconfigurability of bandwidth, carrier frequency, RF frontend

Joint communications and sensing

- NTN-assisted localization
- Integrated communication and monostatic sensing
- Integrated monostatic and bistatic sensing
- Multi-static sensing

IF transmitter

Joint communications and sensing

Reflecting

Bistatic

sensing at UE

Scattering

point

Fused mar

UE state trajectory, SP map, VA map

Eusion center

at BS

Fused map UE state

Distributed MIMO and RIS-assisted transmission

Signal processing and algorithms (model/AI-based)

Bits

Bits

Topics

Waveforms, modulations, and coding

- OFDM-based waveforms at sub-THz frequencies
- Zero-crossing modulation (ZXM) with one-bit quantization
- Polar constellations
- AI/ML learned waveforms
- Learn RIS-reflecting modulation (RM)
- Optimized codding

Signal processing for MIMO schemes

- Multi-antenna location-dependent coded caching
- Coherent joint transmission
- Non-coherent joint transmission
- Channel estimation for RIS
- CSI prediction
- CSI compression
- ML-based joint user-AP allocation/selection

Signal processing for joint communications and sensing

- Flexible baseband transceiver for JCAS
- Waveform learning for JCAS
- Optimization of OFDM-based bistatic sensing
- Resource allocation

Optimization of modulation and coding

Resource allocation for JCAS

ML-based joint user-AP allocation/selection

estimates

Channel Channel encoder Bit-to-symbol mapping IFFT Add CP MIMO channel Remove CP FFT DeepRx Channel decoder

ZXM modulation

Learned constellation

Flexible spectrum access solutions

Topics

Spectrum sharing, coexistence

- Assumptions and models to determine sharing possibilities
- TN-NTN spectrum coexistence and sharing •
- Multi-RAT spectrum sharing
- TN/NTN enhancement •

Low-latency random access

sub-THz access methods

Rural area

Remote area

Risk-informed random access ٠

Proactive resource management

Improve resource utilization and optimization of transmission parameters

Urban area

TN-NTN coexistence scenarios

Low-Latency Random-Access

TN/NTN enhancement Proactive resource management - + Extra Capacity Functional blocks Mainstream MRSS Correlation Prediction 5G Ranges BS allocates 3 (d) Essential 6G Range ng correlation information between node : Complementary 6G Range and node 2, BS preemptively allocates resources to Node 2 for time $t + \Delta t$ FR1 FR2 Sub-THz (6G) Resource Map at BS Interference Prediction

Bandwidth

71GHz

7GHz 15GHz 24GHz

Coverage

KVIs focused solutions: sustainability, security, resilience

Link modelling and simulation tools

Topics

Channel modelling

- Sub-THz channel parameters for 3GPP channel model
- Sub-THz channel model component for near-field condition
- Coverage analysis at THz frequencies
- JCAS channel modelling

Simulation tools

- RIS modeless
- Link-level model for 6G PHY
- Electromagnetic filed (EMF) assessment in D-MIMO

Signal level analysis for RIS

EMF simulation environment

Link-level simulator

Figure 4-3 Diagram of the 6G PHY layer simulator.

Proof of Concepts

JCAS demonstrator: to show the possibility of using the same hardware for both communication and sensing

Radio propagation measurements: to collect data for radio channel modelling

Al-native air interface: to demonstrate higher throughput with a partially learned air interface

SDR-based flexible transceiver: integration of multiband IF transceiver with high frequency frontend

More details

D4.2 - Radio design and spectrum access requirements and key enablers for 6G evolution

D4.3 - Early results of 6G radio key enablers

Deliverable D4.2

Radio design and spectrum access requirements and key enablers for 6G evolution

JU) under the European Union's Horizon Europe research and innovation programme under Grant Agreement No 101095759.

Date of delivery:	31/10/2023	Version:	1.0
Project reference:	101095759	Call:	HORIZON-JU-SNS-2022
Start date of project:	01/01/2023	Duration:	30 months

Deliverable D4.3

Early results of 6G Radio Key Enablers

Hexa-X-II project has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation programme under Grant Agreement No 101095759.

Date of delivery:	30/04/2024	Version:	0.1
Project reference:	101095759	Call:	HORIZON-JU-SNS-2022
Start date of project:	01/01/2023	Duration:	30 months

Document properties:

Document Number:	D4.3
Document Title:	Early results of 6G Radio Key Enablers
Editor:	Ahmad Nimr (TUD)

HEXA-X-II.EU // У in 🕒

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101095759.