#### 6G series workshop from Hexa-X-II

### Hexa-X-II Foundation of overall 6G system design

13 February 2023

Sylvaine Kerboeuf, Nokia Hexa-X-II hexa-x-ii.eu





# **Evolution to 6G E2E system**

#### **Evolution towards 6G**





LLS = Lower layer split

#### **6G: A platform serving** applications



- 6G networks should be platforms for a wide range of technologies towards a wide range of applications
- The networks should expose data through simple APIs and allow for interaction with applications





# 6G Design Principles & system requirements



|                                                                                  | Principle 1<br>Support and exposure<br>of 6G services<br>and capabilities |                                                                                     | <u>Principle 2</u><br>Full automation and<br>optimization                                  | Principle 3<br>Flexibility to<br>different network<br>scenarios | <u>Principle 4</u><br>Network Scalability                               |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|--|
|                                                                                  | Principle 5<br>Resilience and<br>availability                             |                                                                                     | Principle 6<br>Persistent security<br>and privacy                                          | Principle 7<br>Internal interfaces<br>are cloud optimized       | <u>Principle 8</u><br>Separation of<br>concerns of network<br>functions |  |
| <ul> <li>Ten 6G design princi</li> <li>Impacting 6G E2E system design</li> </ul> | Netv<br>cor                                                               | <u>Principle 9</u><br>vork simplification in<br>nparison to previous<br>generations | <u>Principle 10</u><br>Minimizing environme<br>footprint and enabli<br>sustainable network | ntal<br>ng<br>KS                                                |                                                                         |  |

• Achieving the 6G key values realization of environmental, social and economical sustainability.

#### **6G System Requirements** (initial)



 ✓ Capabilities of the system in terms of what it should do and relevant to a selected list of 6G use cases.



Hexa-X-II 6G use-cases (source Hexa-X-II D1.2)

 A set of operational requirements which will not be directly visible to end-users, but provide functionality to efficiently fulfill use case requirements for operators

| Requirements\L                                                                             | Ubiquitous<br>Network                                                         | Real-time digital<br>twin | Seamless<br>Immersive<br>Reality                      | Cooperating<br>mobile robots | Human centric<br>services | Network<br>assisted<br>mobility |        |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------|------------------------------|---------------------------|---------------------------------|--------|
| Ubiguitous connectivi                                                                      | tv                                                                            | Х                         | X                                                     |                              | Х                         | X                               | X      |
| Indoor coverage                                                                            | 1                                                                             | х                         | X                                                     | Х                            | х                         | X                               |        |
| Extreme connectivity (                                                                     | high bitrate)                                                                 |                           |                                                       | х                            |                           |                                 |        |
| Mobility support                                                                           |                                                                               | Х                         |                                                       | Х                            | Х                         | X                               | X      |
| Pervasive Al/ML                                                                            |                                                                               |                           | X                                                     | Х                            | Х                         | X                               | Х      |
| Efficient sleep states                                                                     |                                                                               | Х                         |                                                       | Х                            |                           | X                               | X      |
| Compute as a Service                                                                       |                                                                               |                           | X                                                     | Х                            | Х                         |                                 | X      |
| Intent-based interface                                                                     | s                                                                             |                           | X                                                     |                              | Х                         |                                 |        |
| Reliability                                                                                |                                                                               | X                         |                                                       | Х                            | X                         | X                               |        |
| Positioning/sensing                                                                        |                                                                               | X                         | Х                                                     | Х                            | X                         | X                               |        |
| Ultra-low-cost                                                                             |                                                                               | Х                         |                                                       |                              |                           |                                 |        |
| Energy neutral                                                                             | Х                                                                             |                           |                                                       |                              |                           |                                 |        |
| Predictable low-latence                                                                    |                                                                               | x                         | x                                                     | х                            |                           | X                               |        |
| communication                                                                              |                                                                               | X                         | X                                                     | ×                            | X                         | V                               | X      |
| Security/Privacy                                                                           | X                                                                             | X                         | X                                                     | X                            | X                         | X                               |        |
| Resilience                                                                                 | X                                                                             | X                         |                                                       | Х                            |                           | X                               |        |
| Service continuity                                                                         | Х                                                                             |                           | Х                                                     |                              |                           | X                               |        |
| Flexible radio<br>protocols                                                                | Mobility<br>procedures                                                        | 5                         | Improved access Native AI/ML convergence capabilities |                              |                           |                                 |        |
| Multi-connectivity                                                                         | connectivity Intent-based Seamless orchestration across the compute continuum |                           |                                                       |                              |                           |                                 | ompute |
| 6G service delivery across multiple digital service providers New 6G capabilities exposure |                                                                               |                           |                                                       |                              | ure                       |                                 |        |



# E2E design

#### Hexa-X-II key terms





- The external view of a set of technologies and interfaces delivering 6G services to applications, ecosystems, verticals, users etc. enabling value.
- The technical realization of 6G platform which includes the technology enablers and their interaction.
- A reference architecture that meets the E2E system needs with respect to hardware, software and applications.
- Any technical asset that makes it possible to realize or enhance a 6G capability.

A 6G enabler is recursive, e.g. 6G system enables new use cases, 6G radio is an enabler of 6G system to achieve system requirements. 6G enablers can be further classified into different types that are extensible, e.g. architecture, system component, process, algorithms, etc

#### 6G E2E system - 6G blueprint

Арр

UE

Device



#### Data plane Control plane Interface/Exposure Control/Intents/Observability



# Foundation of the E2E 6G system architecture

- The 6G system should provide services and data exposure to E2E applications - covering new and existing capabilities
- New functionalities should be incorporated into established network structures

Completed with specific views to capture the holistic system, e.g. management and orchestration views, etc.

#### From 6G enablers to 6G system design?





#### **Iterative system design process**



KPIs/KVIs-based design iterative sub-process

2 Top-down versus bottom-up alignment iterative sub-process



Trade-offs as conformance to certain values can lead to degraded performance.

- Pros and cons of each promising enabler/component/subsystem
- Aligning technical components/enablers with the E2E performance and operation targets/expectations

#### Analysis of Hexa-X-II enablers for integration in E2E system



Key criteria for enabler integration in E2E system

- □ Relevance and significance of enabler towards E2E system design
- □ Impact of the enabler on the E2E system design
- □ How the enabler fits with the system design principles
- □ Feasibility (estimation) of enabler vs migration options
- Dependency with other enablers
- □ Any proposed updates to E2E system design and architecture design principles
- □ Network performance, security/privacy, flexibility, resilience/robustness, and sustainability/energy efficiency

# Mapping of management and orchestration enablers in E2E system blueprint





Representations the set of enablers analyzed in the first iteration that are part of the M&O view of the 6G E2E system blueprint.

#### Early M&O specific view





A "TechCo" framework embraces new services beyond traditional connectivity, with a focus on digital and applicationcentric services resulting from an innovation ecosystem leveraging frictionless interactions between network and 3<sup>rd</sup> 15 party application providers.

#### **System Proof of Concepts**



Three System-PoCs validating the system design and demonstrating the feasibility of achieving targeting 6G KPIs and KVIs.

|                                                                                                             |                                                                                                      |                                  |                                                                           | Social                                                      | Environme                         | ental E                                       | conomic              |                                                                           | Social                              | Environr                   | nental                                           | Economic     |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------|-----------------------------------------------|----------------------|---------------------------------------------------------------------------|-------------------------------------|----------------------------|--------------------------------------------------|--------------|
| Social         Environmental         Eco           Trustworthiness;         Energy efficiency /         Reg |                                                                                                      | Economic<br>Resilience / limited | Trustworthiness;<br>Exposure, security<br>/ privacy; Digital<br>inclusion | Energy efficiency /<br>Power downtime;<br>consumption CAPEX |                                   | esilience / Limited<br>owntime; OPEX;<br>APEX |                      | Trustworthiness;<br>Exposure, security<br>/ privacy; Digital<br>inclusion |                                     | fficient<br>o-energy       | Resilience / Limited<br>downtime; OPEX;<br>CAPEX |              |
| Tim                                                                                                         | ne related KPIs                                                                                      | Power<br>consumption             | downtime; OPEX                                                            | Management                                                  | and                               | Diagnostics<br>intent                         | 3                    |                                                                           | Management ar<br>orchestration      | nd                         | Diagnos                                          | stics intent |
|                                                                                                             | Management ar orchestration                                                                          | nd Diagno<br>intent              | ostics                                                                    | Network archi<br>Trustworthy fl                             | itecture and tr<br>exible topolog | ransformatior<br>gies,                        | 1                    |                                                                           | Network archite<br>Trustworthy flex | cture and t<br>ible topolo | ransformat<br>gies,                              | ion          |
| ellaureio                                                                                                   | Network architecture and transformation<br>Trustworthy flexible topologies,<br>Beyond communications |                                  | 6G device                                                                 | d communications                                            |                                   |                                               |                      | 6G device<br>components                                                   |                                     | 6G radio                   | D                                                |              |
| 6G device 6G radio<br>components aspects                                                                    |                                                                                                      |                                  | Cobots, twinni                                                            | ng                                                          |                                   | = / Taulad                                    |                      | Cobots, twinning                                                          | j, XR, loŝ                          | Senses                     | īţī 🗸                                            |              |
| Co                                                                                                          | obots ((                                                                                             |                                  |                                                                           | 12                                                          |                                   |                                               | Flexible<br>topologi | e<br>ies                                                                  |                                     |                            |                                                  |              |
|                                                                                                             | System PoC A                                                                                         |                                  |                                                                           | System PoC B                                                |                                   |                                               |                      |                                                                           | Syster                              | n PoC C                    |                                                  |              |
| Pre<br>A i                                                                                                  | eliminary re<br>n D2.2                                                                               | esults of Syst                   | em-PoC                                                                    |                                                             | Gra                               | adual ado                                     | dition               |                                                                           |                                     |                            |                                                  |              |

#### **PoC A - Warehouse Inventory Management**





#### **Advanced Features for Applications:**

• Cobots (autonomous robots, UAVs, human in the loo), Massive Twinning, XR

#### Social Considerations

• Sustainability (Environmental and other perspectives), Inclusion, Trustworthiness

#### Scenario

- Intent: area to be covered
- Task allocation: devices to sub-areas
- Functionality deployment
- Task realization through cooperation of devices and humans.

#### Requirements for next generation:

- Extreme connectivity: latency, bit rate
- Joint Communications and Sensing
- Flexible allocation of functionality & topology formulations

### **PoC A - Key findings\***

- Functionality Allocation (FA) mechanism was developed for optimally placing functionality to the various compute nodes of the system.
- As power consumption is considered the power consumption for processing and the transmission power consumption.
- A metaheuristic algorithm is developed based on a Genetic Algorithm paradigm.
- The results are compared with two baseline algorithms, the feasible random placement and the SoTA round-robin placement.
  - The validation scenario comprised 7 compute nodes (3 robotic units, 2 edge servers, 2 cloud servers) and increasing number of compute workloads/ tasks
- The FA algorithm compared to the baselines can gain 8.8-28.6% reduction of power consumption
- Working on:
  - integrating the trust manager component to succeed maximum trustworthiness.
  - Develop an ML algorithm to possibly obtain better performance.



Reduction of power consumption with increasing number of workloads of our FA mechanism compared with two baseline algorithms.

\* More key findings are reported in D2.2

#### System-PoC B

- Pre-condition: A manufacturing task is conducted in a certain site, e.g., site A
- In the particular site a role needs to be changed (e.g., from manufacturing to inventory)
- Manufacturing is transferred to another site, e.g., site B
  - Manufacturing in site B uses components from site A
  - Show case of multi-site, synergetic orchestration
  - requirements on connectivity
  - complementary use of software and hardware components (no duplication)



#### Multi-site, synergetic monitoring and orchestration

| 1        | 1                                                                   |
|----------|---------------------------------------------------------------------|
| 2        | "\$schema": "http://json-schema.org/draft-07/schema#",              |
| 3        | "title": "Ground Robot Node Metrics",                               |
| 4        | "nodeDetails": {                                                    |
| 5        | "nodeld": "uuid1".                                                  |
| 6        | "nodeType": "GroundRobot".                                          |
| 7        | "timestamp": "2022_12_08T12:34:567"                                 |
| <i>.</i> | Clinestemp · Loss-iz-objizististe                                   |
|          | "metrics": [                                                        |
| 10       |                                                                     |
| 10       | l<br>Instrictionally Heaven consumption idle!                       |
| 11       | "metricvame : "power_consumption_idie",                             |
| 12       | metricvalue: 70,                                                    |
| 13       | Wetriconit : Watts ,                                                |
| 14       | metriciype : Physical                                               |
| 15       |                                                                     |
| 16       |                                                                     |
| 1/       | "metricName": "power_consumption_max",                              |
| 18       | metricValue": 260,                                                  |
| 19       | "metricUnit": "Watts",                                              |
| 20       | "metricType": "Physical"                                            |
| 21       | },                                                                  |
| 22       |                                                                     |
| 23       | "metricName": "cpu_utilization",                                    |
| 24       | "metricValue": 50, // Assuming 50% CPU utilization for this example |
| 25       | "metricUnit": "Percent",                                            |
| 26       | "metricType": "Application"                                         |
| 27       | },                                                                  |
| 28       | {                                                                   |
| 29       | "metricName": "ram_utilization",                                    |
| 30       | "metricValue": 4, // Assuming 4 GB of RAM used for this example     |
| 31       | "metricUnit": "GB",                                                 |
| 32       | "metricType": "Application"                                         |
| 33       | }                                                                   |
| 34       | ],                                                                  |
| 35       | "other": {                                                          |
| 36       | "location": "1_3",                                                  |
| 37       | "max_cap_link_between_HE": [                                        |
| 38       |                                                                     |
| 39       | "id": "uuid2",                                                      |
| 40       | "name": "LinkToUUID2",                                              |
| 41       | "value": 1000 // Assuming a dummy value for maximum capacity link   |
| 42       | }                                                                   |
| 43       | ],                                                                  |
| 44       | "power_consumption_idle": 70,                                       |
| 45       | "power_consumption_max": 260                                        |
| 46       | },                                                                  |
| 47       | "resources": {                                                      |
| 48       | "arm": 1,                                                           |
| 49       | "battery": 0.2,                                                     |
| 50       | "camera": 1,                                                        |
| 51       | "cpu": 6,                                                           |
| 52       | "max_cpu": 6,                                                       |
| 53       | "ram": 8,                                                           |
| 54       | "wheels": 1                                                         |
| 55       | }                                                                   |
| 56       | 3                                                                   |
| 57       |                                                                     |
|          |                                                                     |

#### **E2E simulation frame**work for connectivity



• E2E simulation framework is planned to be developed and used for selected 6G connectivity enablers performance evaluation



#### More details





# HEXA-X-II

#### HEXA-X-II.EU // 💥 in 🕩





Hexa-X-II project has received funding from the Smart Networks and Services Joint Undertaking (SNS JU) under the European Union's Horizon Europe research and innovation programme under Grant Agreement No 101095759.