6G-ANNA

A perspective from the German 6G Lighthouse Project

Gerald Kunzmann

6G series workshop by Hexa-X-II February 13th, 2024

6G-Access, Network of Networks, Automation & Simplification (6G-ANNA)

6G ANNA - Ambitions

- Strengthen and push German and European industry
- Enable dissemination by industry
- Drive global pre-standardization activities from a German and European perspective
 - Set up a "System Engineering Gremium" (SEG)
 - Support other German 6G projects (aligned with 6G Platform)
- Strengthen and push German and European technology sovereignty

- German 6G Platform, 6G Hubs and industry projects
- European projects: Hexa-X-II, EC SNS JU, ...
- National 6G programs: Finland, Spain, Sweden, France, ...
- International 6G programs: Next G Alliance, IOWN, ...

Begin: 01.07.2022 / **Duration:** 3 years

Project Partners

Industry

- Nokia
- Airbus
- Bosch
- Ericsson
- Rohde & Schwarz
- Siemens
- Vodafone

SMEs

- AIN
- Blackned
- Cadami
- Meshmerize
- Mimetik
- PHYSEC
- Smart Mobile Labs
- Wandelbots

Research Institutes

- Fraunhofer AISEC
- Fraunhofer HHI
- Fraunhofer IPT

Universities

- FAU Nürnberg Erlangen
- KIT
- Ruhr-Universität Bochum
- RWTH Aachen ICE
- RWTH Aachen INDA
- TU Braunschweig
- TU Dortmund
- TU Dresden MNS
- TU Dresden ComNets
- TU Hamburg Harburg
- TU Kaiserslautern
- TU München LKN
- TU München LMT
- TU München NET
- U Bremen
- U Magdeburg

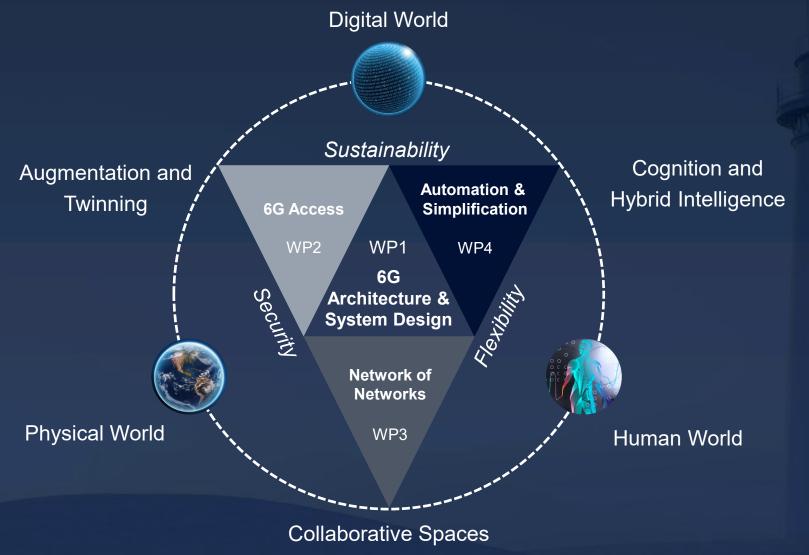
Associated partners

- Airbus
- Einhell
- Mercedes-Benz

Project Context and Vision – Connecting the Worlds

Physical World

Human World



Digital World

Project Context and Vision – Connecting the Worlds

Project Context and Vision – Connecting the Worlds

WP1 – 6G Architecture and System Design – Objectives

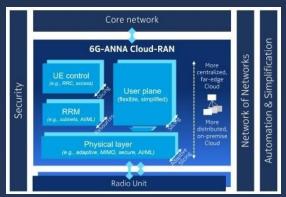
Use cases and requirements

- Evaluation of existing use cases & requirements
- Extension with project-specific areas and details
- One focus is on enabling sustainability for other industries (6G handprint)

Secure e2e architecture & system design


- Functional 6G architecture definition based on WP2-4 results
- Security architecture based on WP1 threat and risk analysis

Sustainable 6G

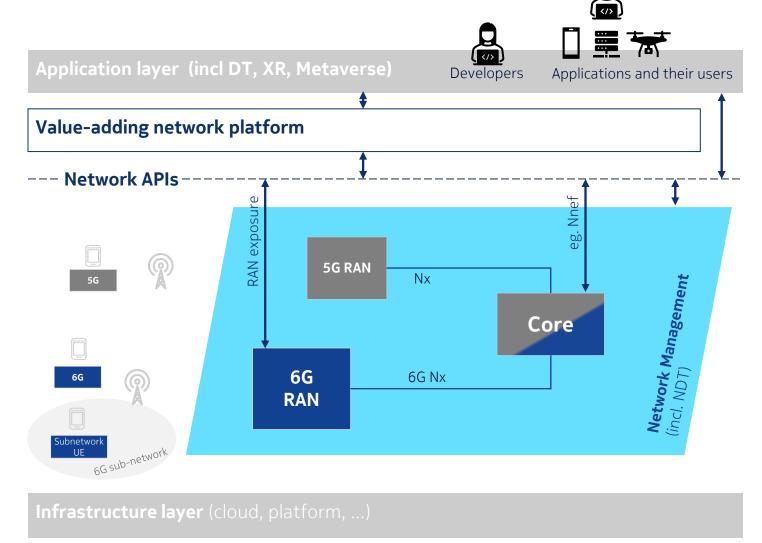

 Increased sustainability / energy efficiency (6G footprint) compared to 5G

6G System Engineering Gremium

• 6G-ANNA results and findings are prepared for and contributed to 6G (pre-) standardization

Collaborative Spaces

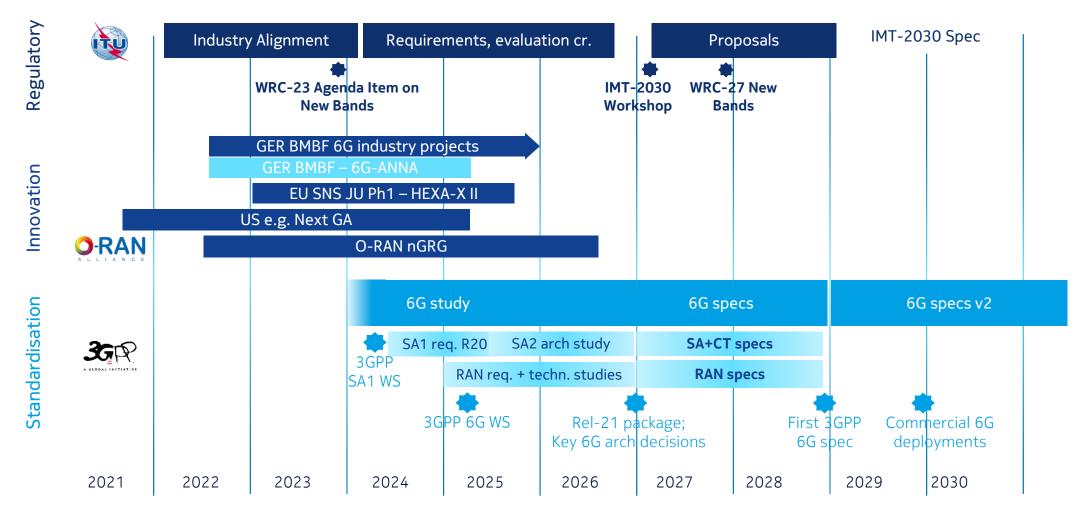
Source: M. Hoffmann *et al.*, "A Secure and Resilient 6G Architecture Vision of the German Flagship Project 6G-ANNA," in *IEEE Access*, vol. 11, pp. 102643-102660, 2023, doi: 10.1109/ACCESS.2023.3313505 : link



Source: 6G-ANNA 6G security poster @ Sicherheit für 6G (German national conference on IT security), Berlin, Germany: <u>link</u>

6G functional architecture

Initial 6G-ANNA view



6G timeline

Milestones of 6G standardization

6G series workshop by Hexa-X-II

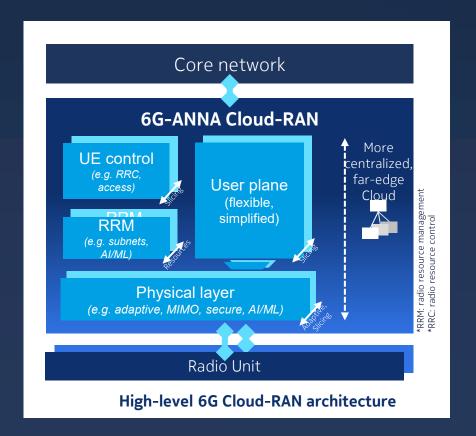
Note: 3GPP timeline / milestones of 6G standardization is 6G-ANNA's view. Note: Future O-RAN release planning still under discussion

WP2 – 6G-Access – Objectives

Task 2.1: Access Overview, Interworking & Spectrum Usage

- Breakdown of use-case requirements for the 6G access with input from relevant projects, e.g., 6G-Hubs, Hexa-X
- Evaluation of 6G spectrum options and migration solutions towards 6G

Task 2.2: Flexible, Secure & Harmonized PHY


- Concepts for physical layer design, including programmability and inclusion of Al
- Development of next-generation distributed MIMO solutions
- Integration of concepts for physical layer security

Task 2.3: RAN Protocols & Cloud-Based Architecture

- Concepts for RAN protocol design, user-/control plane and mobility
- Development and evaluation of concepts for AI into radio resource management aspects
- Development of solutions for RAN virtualization and Cloud RAN.

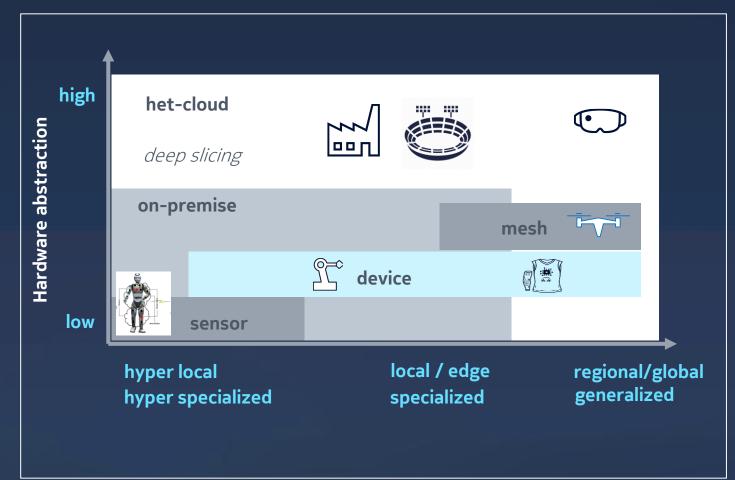
WP3 – Network of Networks – Objectives

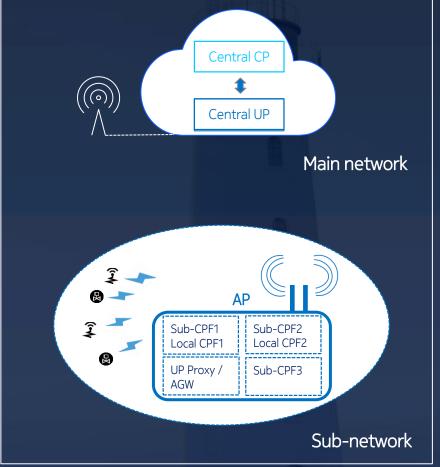
Secure and reliable flexible topologies

Task 3.1: 6G sub-networks

- Integration aspects of mobile & dynamic 6G sub-networks and D2D communication in various scenarios
- Integration aspects of access technologies, identity, authentication with AI control
- Optimization of energy consumption, cost, availability, reliability, security
- Combination of licensed and unlicensed spectrum
- Design and optimization of access networks, data center interfaces and edge clouds

Task 3.2: Security & Resilience


- Resiliency through Autonomous subnets, Information Centric networking (ICN), fallback, AI in Radio Resource Management, opportunistic re-optimization of networks
- Security and Trustworthiness (including multicloud)


6G Network of Networks

- Flexible
- Reliable
- Secure

6G Access and Network of Networks – 6G sub-Networks

Local specialized performance in co-operation with wide area functionality

WP4 – Automation & Simplification – Objectives

Task 4.1: Management & Orchestration

Developing data-driven reconfigurable and robust resource management and control in
 6G architectures with high level of network security

Task 4.2: Digital Twins & Extended Reality (XR)

 Developing and leveraging (real-time) digital twins including required 6G interfaces and compression as well as support of XR applications in 6G

Task 4.3: Distributed Applications & Artificial Intelligence

 Development of methods & tools to enable distributed applications that include the usage of neural networks, distributed over network devices

Task 4.4: Sustainability & Trustworthiness

- E2E energy minimization / sustainability
- Trustworthy / reliable / explainable AI in mobile networks

Automation & Simplification – Digital Twins

A Geospatial Digital Twin Type 1 is a (photo-realistic) digital twin of, e.g., buildings, machines, and can be used for simulation.

A **Digital Shadow (DS)** is a virtual replica of a real-world system, where changes of the real-world are

updated in the DS (one way).

A Network Digital Twin Type 1 (NDT) is a digital shadow, whose physical counterpart communication network.

A Geospatial Digital Twin Type 2 is a **real-time** digital twin of the environment.

A **Digital Twin** (DT) is a virtual replica of a real-world system, on which operations can be performed (bidirectional).

A Network Digital Twin Type 2 additionally make (NDT) can operational decisions and drive those on the physical system.

Merging the worlds by integrated and spatial twinning for the industrial metaverse

Making it real – Mobility Metaverse

6G-ANNA Proof of Concept from Bosch & Nokia

6G sub-networks

- Local sub-networks operated in co-ordination with wide area policies (interference management, traffic authorization)
- Protocol proxy / AGW converts internal to external protocols

Integrated and Spatial Digital Twinning

From digital shadows to integrated real-time digital twins of physical environments, sensors, and networks

PoC demonstrated i.a. at Digital Gipfel

(summit on digital transformation organized by German government)

November 20, 2023 in Jena, Germany

Thank You!

6G-ANNA WP1 "Architecture" lead 6G Platform WG7 "Architecture" lead

NOKIA

Dr. Gerald Kunzmann Principal Research Lead

gerald.kunzmann@nokia.com

Tel. +49 1511 2033541 Werinherstr. 91, 81541 Munich Germany 6G-ANNA coordinator

NOKIA

Dr. Marco Hoffmann Program Manager

marco.hoffmann@nokia.com

Tel. +49 1520 9054106 Werinherstr. 91, 81541 Munich Germany

