

## NON-TERRESTRIAL NETWORK (NTN) IN 6G

#### **6G-NTN technical manager**

Nicolas.chuberre@thalesaleniaspace.com

Hexa-X-II 6G series workshop E-meeting, 13<sup>th</sup> February 2024





Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Economic Alfair Education and Research EAER State Secretariat for Education, Research and Innovation SERI

#### **Facts and figures**





Addressing call: "<u>SNS-2022-STREAM-B-01-03: Communication</u> Infrastructure Technologies and Devices"



**Overall goal**: Develop an NTN component fully integrated with the 6G infrastructure able to provide enhanced Mobile BroadBand (eMBB) and Ultra Reliable Low Latency (URLL) services to vertical industries and consumers terminals in outdoor and light indoor conditions.



Targeted TRL: 2 - 4



Duration: 36 months



Project kick-off: 1 January 2023

Alessandro Vanelli-Coralli, Project Coordinator (UniBo), Nicolas Chuberre, Technical Manager (TAS-F), Sandro Scalise, Innovation Manager (DLR), Monique Calisti, Communication & Dissemination Manager (MAR) **6G-NTN** project ambitions is to become the flagship R&I project for developing the 6G **NTN** component and driving its standardization phase in 3GPP as part of Rel-20+

#### **6G-NTN** Ambitions





Orange Restricted

3

#### **Overview of Use Cases**



#### Use Cases enabled/enhanced by 6G-NTN

### Ubiquitous & resilient connectivity



- UC5: Consumer Handheld Connectivity and Positioning in Remote Areas,
- UC6: Continuous Bi-directional Data Streams in High Mobility,
- UC7: Direct Communication over Satellites.
- UC1: Maritime Coverage for search and rescue coast guard intervention,
- UC3: Urban air mobility,
- UC2: Autonomous power line inspection using drones,
- UC4: Adaptation to PPDR or Temporary Events,

#### **Possible performance Requirements**



| Target service performances                                                        | NTN in 5G (As per 3GPP &/or ITU-R IMT2020 satellite requirements)                 | NTN in 6G                                                                                                                                                                              |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Peak data rate (DL/UL) wrt Handheld & low cost<br>IoT devices                      | 1/0.1 Mbps (Outdoor only) @ up to 3 km/h                                          | Outdoor conditions: Tens of Mbps @ up to 250 km/h<br>Light indoor/in car conditions: At least Short Message<br>Service capability                                                      |  |
| Peak data rate (DL/UL) wrt Vehicle or drone (flying and surface) mounted devices   | [50/25] Mbps @ up to 250 km/h (with 60 cm aperture)                               | Hundreds of Mbps (Outdoor only) @ up to 250 km/h<br>(with <20 cm equivalent aperture)                                                                                                  |  |
| Peak data rate (DL/UL) wrt Large Aeronautic, maritime platforms mounted devices    | [50/25] Mbps @ up to 1000 km/h                                                    | Thousands of Mbps (Outdoor only) @ up to 1200<br>km/h (with <60 cm equivalent aperture)                                                                                                |  |
| Location service (target accuracy and acquisition time) in outdoor conditions only | respectively 1 meter and < 100 seconds (reliability through Network verification) | respectively 1 meter and < few seconds (95% reliability through Network based positioning method)                                                                                      |  |
| Coverage                                                                           | Outdoor only                                                                      | Light indoor/In car                                                                                                                                                                    |  |
| Reliability                                                                        | up to 99.9% (1-10 <sup>-3</sup> )                                                 | up to 99.999% (1-10 <sup>-5</sup> )                                                                                                                                                    |  |
| Over the air Latency for eMBB-s and uRLLC-s                                        | Control plane: 40 ms<br>User plane: 10 ms                                         | Control plane (propagation delay excluded): same a<br>IMT-2030 terrestrial Radio Interface<br>User plane (propagation delay excluded): same as<br>IMT-2030 terrestrial Radio Interface |  |
| Connection density                                                                 | Up to 500 per km2                                                                 | Up to 500 per km2 >1000 per km2                                                                                                                                                        |  |

6G-NTN

#### **NTN Architecture: 3D Network Concept**



#### NTN radio interface: design drivers (1/2)



Spectrum efficient and flexible waveform optimized for both terrestrial and non-terrestrial network components

| Candidate radio<br>interface features                   | Rationale                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Multi carrier waveform<br>enhancements                  | <ul> <li>OFDM evolution offering relaxed synchronization requirements.</li> <li>Supporting UE without GNSS capabilities (also referred as « GNSS free/independent operation ».</li> <li>Mitigating specific satellite constraints: Reduce the Peak-to-Average Power Ratio (PAPR) on the downlink to maximize the spectral efficiency in case of reduced number of channels in a single on board amplifier.</li> </ul> |  |  |
| Advanced modulation, coding and multiple access schemes | <ul> <li>Minimizing error rate performance under low SNR conditions.</li> <li>Enabling the support high link margin to mitigate challenging radio link conditions (e.g. to overcome building penetration loss).</li> </ul>                                                                                                                                                                                            |  |  |
| Design flexible UL/DL framing structure                 | <ul> <li>Adapt the frame structure to satellite Orbit, frequency range etc</li> <li>Reduce the overhead penalty since there are quasi no multi-paths in satellite propagation channel.</li> </ul>                                                                                                                                                                                                                     |  |  |

#### NTN radio interface: design drivers (2/2)



| Candidate radio<br>interface features                                      | Rationale                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design appropriate robust<br>reference signals for enhanced<br>positioning | <ul> <li>Support reliable (i.e. trusted) network based solution for accurate and fast response Positioning,<br/>Navigation and Timing (PNT) service.</li> <li>Potential narrow-band synchronization signals could be also designed, where the PRS resources<br/>could be defined over multiple slots.</li> </ul> |
| Joint communication and sensing                                            | <ul> <li>Provide low to medium resolution sensing capabilities with sensing capability directly<br/>integrated/embedded into the design of the waveform.</li> </ul>                                                                                                                                              |
| Support of broadcast and multicast                                         | <ul> <li>Leverage the large coverage area of satellites</li> </ul>                                                                                                                                                                                                                                               |
| Enablers for Artificial<br>Intelligence driven radio<br>resource control   | <ul> <li>Increase the "goodput" of a radio link through dynamic optimization of the radio interface<br/>configuration (e.g. Modulation, coding, power, signal occupancy, interleaving depth, HARQ)<br/>according to the radio link conditions</li> </ul>                                                         |
| Spectrum sharing between TN and NTN                                        | <ul> <li>Revise the methodology of coexistence study and RF/RRM specification, and potentially consider co-<br/>channel spectrum sharing between TN and NTN.</li> </ul>                                                                                                                                          |
| New spectrum                                                               | <ul> <li>Some additional MSS allocations may be granted at the WRC-2027 as per agenda items 1.12, 1.13<br/>and 1.14. Moreover, some additional bands such as Q/V bands should be considered for broadband<br/>connectivity.</li> </ul>                                                                           |
| TDD support                                                                | <ul> <li>Unpaired spectrum may be allocated to NTN in selected bands, e.g. in order to support TDD<br/>operation in some frequency bands for NTN nodes at 800 km altitude and lower.</li> </ul>                                                                                                                  |
| 6G-NTN                                                                     |                                                                                                                                                                                                                                                                                                                  |

#### **Spectrum Usage**



Here under frequency bands that may be considered for respectively 5G and 6G non-terrestrial networks:

| Services                       | NTN in 5G (Currently)            | NTN in 6G                             |  |
|--------------------------------|----------------------------------|---------------------------------------|--|
| Narrow/Wideband connectivity   | FR1: MSS allocations in L & S    | FR1: same as 5G NTN and               |  |
| to smartphones, vehicle/drone  | bands (e.g. see Rel-17 work).    | additional Satellite service          |  |
| mounted & low cost IoT devices |                                  | allocations in bands up to 7.125      |  |
|                                |                                  | GHz.                                  |  |
| Broadband connectivity to      | Above 10 GHz: FSS and MSS        | Above 10 GHz: same as 5G NTN          |  |
| vehicle/drone mounted devices  | allocations in Ka band (e.g. see | + Satellite service allocations in Ku |  |
| and to large Aeronautic,       | Rel-18 work).                    | and Q/V bands.                        |  |
| maritime platforms             |                                  |                                       |  |

6G-NTN





#### ANNEX

© Copyright 6G-NTN 2022

11

#### **NTN Development/Deployment Wrt Reference Scenarios**



| Solutions                                      | Narr<br>coni<br>to lo]                                                     | ow band<br>nectivity<br>Γ devices | Narrow to wideband<br>connectivity<br>to handheld devices                          | Broadband conn<br>to non-handheld                                                                                                                        | ectivity<br>devices |  |  |
|------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| Spectrum                                       | < 7                                                                        |                                   | GHz Above 10 GHz                                                                   |                                                                                                                                                          | Hz                  |  |  |
| Service                                        | Up to hundreds of kbps                                                     |                                   | Up to few Mbps                                                                     | Up to hundred Mbps                                                                                                                                       |                     |  |  |
| 3GPP radio<br>interface                        | 4G NB-IoT/eMTC                                                             |                                   | 5G New Radio                                                                       |                                                                                                                                                          |                     |  |  |
| Example of applications                        | Verticals (smart grids,<br>water distribution, oil &<br>gas), agriculture) |                                   | Consumers +<br>Verticals (Automotive,<br>public safety, utilities,<br>agriculture) | Verticals: Telco (e.g. Backhaul), IPTV<br>service providers, Satellite News<br>Gathering, Transport (aeronautical,<br>maritime, railway), public safety, |                     |  |  |
| Space segment                                  | GSO                                                                        | NGSO                              | NGSO                                                                               | GSO                                                                                                                                                      | NGSO                |  |  |
| Timeline indication<br>(NOTE 1)                | 2023-<br>2025                                                              | 2024-2029                         | 2026-2029                                                                          | 2026-2029                                                                                                                                                | 2026-2029           |  |  |
| NOTE 1: Sources: 3GPP RP-232732 (source: GSOA) |                                                                            |                                   |                                                                                    |                                                                                                                                                          |                     |  |  |

6G-NTN

#### **Some References**

 « 3GPP Non-Terrestrial Network: A Global Standard for Satellite Communication Systems », Special Issue of the International Journal of Satellite Communications and Networking, Pages: 217-301, Edited by Mohamed El Jaafari and Nicolas Chuberre, published by Wiley, May/June 2023,



https://onlinelibrary.wiley.com/toc/15420981/2023/41/3

« 5G Non-Terrestrial Networks » by Prof.
 Alessandro Vanelli-Coralli, Mohamed El Jaafari,
 Nicolas Chuberre, Gino Masini, Alessandro
 Guidotti, published by Wiley-IEEE Press, 14th
 January 2024

https://www.amazon.co.uk/5G-Non-Terrestrial-Networks-Vanelli-Coralli/dp/1119891159

Horizon Europe R&D « 6G-NTN » project: https://www.6g-ntn.eu



Orange Restricted

# **5G** Non-Terrestrial Networks

Alessandro Vanelli-Coralli | Nicolas Chuberre Gino Masini | Alessandro Guidotti Mohamed El Jaafari

IEEE PRESS

WILEY

**Workshop on 6G NTN Standardisation with ETSI** 



Date: 3-4th april 2024

Location: ETSI premises

See <a href="https://www.etsi.org/events/2306-etsi-ntn-conference">https://www.etsi.org/events/2306-etsi-ntn-conference</a>



#### **The Consortium**





Orange Restricted

# **6**BNTN



# **GGSNS**

#### Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

Swiss Confederation

