

NON-TERRESTRIAL NETWORK (NTN) IN 6G

6G-NTN technical manager

Nicolas.chuberre@thalesaleniaspace.com

Hexa-X-II workshop on enablers for 6G-system *E-meeting*, 26th January 2024

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederazion svizra

Swiss Confederation

Federal Department of Economic Affai Education and Research EAER State Secretariat for Education, Research and Innovation SERI

6G-NTN

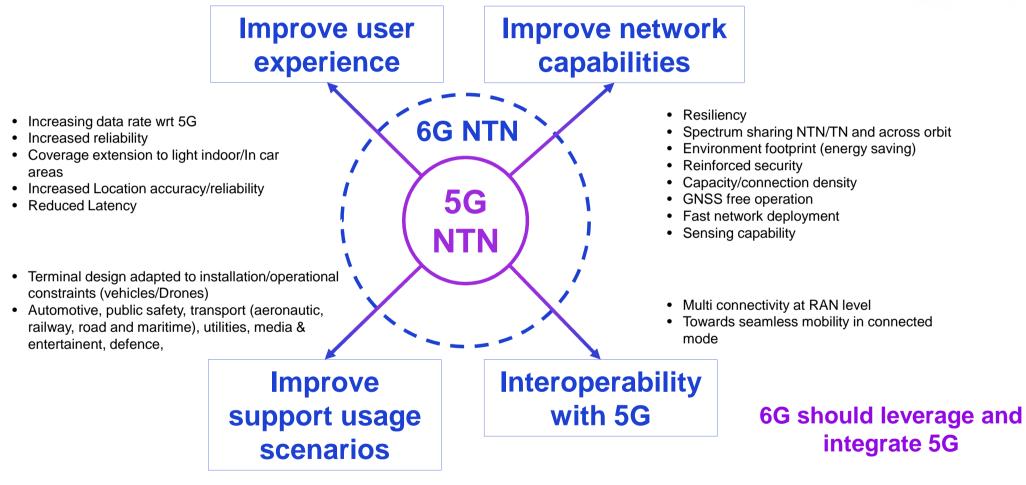
Facts and figures

Addressing call: "<u>SNS-2022-STREAM-B-01-03: Communication</u> Infrastructure Technologies and Devices"

Overall goal: Develop an NTN component fully integrated with the 6G infrastructure able to provide enhanced Mobile BroadBand (eMBB) and Ultra Reliable Low Latency (URLL) services to vertical industries and consumers terminals in outdoor and light indoor conditions.

Targeted TRL: 2 - 4

Duration: 36 months

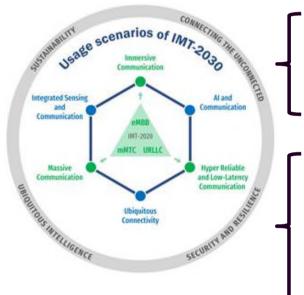


Project kick-off: 1 January 2023

Alessandro Vanelli-Coralli, Project Coordinator (UniBo), Nicolas Chuberre, Technical Manager (TAS-F), Sandro Scalise, Innovation Manager (DLR), Monique Calisti, Communication & Dissemination Manager (MAR) **6G-NTN** project ambitions is to become the flagship R&I project for developing the 6G **NTN** component and driving its standardization phase in 3GPP as part of Rel-20+

6G-NTN Ambitions

Orange Restricted


3

6G-NTN

Overview of Use Cases

Use Cases enabled/enhaced by 6G-NTN

- UC5: Consumer Handheld Connectivity and Positioning in Remote Areas,
- **UC6:** Continuous Bi-directional Data Streams in High Mobility,
- UC7: Direct Communication over Satellites.
- UC1: Maritime Coverage for search and rescue coast guard intervention,
- UC3: Urban air mobility,
- UC2: Autonomous power line inspection using drones,
- UC4: Adaptation to PPDR or Temporary Events,

SGNTN

System Requirements (Possible 3GPP SA1 Inputs)

Improved user experience

- Provision of emergency services (at least SMS) via satellite in light indoor/in car conditions
- Provision of trusted and accurate determination of UE location via satellite networks
- Provision of Enhanced connectivity to consumer Handheld (e.g. for video, in-car/light indoor)
- Provision of broadband connectivity to (semi) autonomous cars and drones (including Urban air mobility) and true seamless global service continuity (zero packet loss/zero interruption/no service rate degradation) in high mobility thanks to NTN/TN combination
- Support of additional types of terminals for satellite connectivity whether vehicle or drone mounted

Improved network capabilities

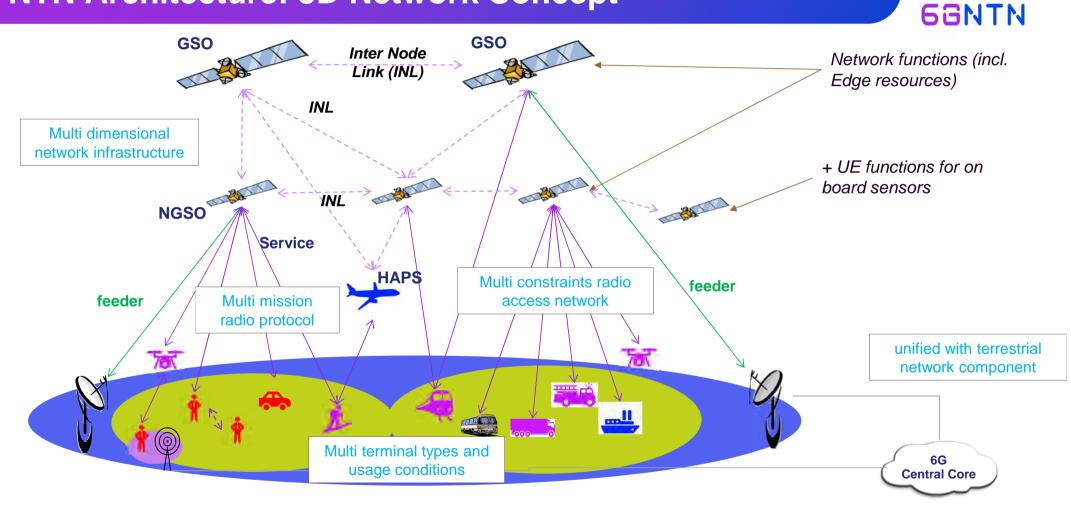
- Fast set-up of an autonomous network over a specific region via satellite (with ISL) and/or HAPS with no or intermittent connectivity to core networks (e.g. for crisis response)
- Energy efficient service delivery in multi access technology network (i.e. NTN/TN)
- Flexible spectrum usage in multi access technology network (i.e. NTN/TN)
- Hot resiliency with respect to Temporary network node failure in multi-layer network (i.e. 3D multi orbit and meshed network = NGSO, GSO, HAPS and/or drone based network node)
- Enable optimized traffic routing between bidirectional and unidirectional access links

Performance Requirements

Target service performances	NTN in 5G (As per 3GPP &/or ITU-R IMT2020 satellite requirements)	NTN in 6G		
Peak data rate (DL/UL) wrt Handheld & low cost IoT devices	1/0.1 Mbps (Outdoor only) @ up to 3 km/h	Outdoor conditions: Tens of Mbps @ up to 250 km/h Light indoor/in car conditions: At least Short Message Service capability		
Peak data rate (DL/UL) wrt Vehicle or drone (flying and surface) mounted devices	[50/25] Mbps @ up to 250 km/h (with 60 cm aperture)	Hundreds of Mbps (Outdoor only) @ up to 250 km/h (with <20 cm equivalent aperture)		
Peak data rate (DL/UL) wrt Large Aeronautic, maritime platforms mounted devices	[50/25] Mbps @ up to 1000 km/h	Thousands of Mbps (Outdoor only) @ up to 1200 km/h (with <60 cm equivalent aperture)		
Location service (target accuracy and acquisition time) in outdoor conditions only	respectively 1 meter and < 100 seconds (reliability through Network verification)	respectively 1 meter and < few seconds (95% reliability through Network based positioning method		
Coverage	Outdoor only	Light indoor/In car		
Reliability	up to 99.9% (1-10 ⁻³)	up to 99.999% (1-10 ⁻⁵)		
Over the air Latency for eMBB-s and uRLLC-s	Control plane: 40 msControl plane (propagation delay excluder IMT-2030 terrestrial Radio InterUser plane: 10 msUser plane (propagation delay excluder IMT-2030 terrestrial Radio Inter			
Connection density	Up to 500 per km2 >1000 per km2			

6G-NTN

NTN Architecture: Design Drivers



- 3D multi-layered architecture with inter-node links (both RF and optical)
- Innovative LEO constellation design
- Software defined payloads embarking required RAN and CN functionalities based on component virtualization, and including edge computing resources
- Access protocol enhancements to optimize mobility (zero-time interruption under high handover rate) of terminals combined with simultaneous multi connectivity between the various components (terrestrial and nonterrestrial)
- Interference mitigation through AI driven RRM

Dynamic orchestration of VNF, smart routing and edge-based service provisioning in a dynamic network topology

- Cyber and physical layer security
- based on a thorough assessment of the vulnerabilities and threats introduced by the proposed 6G architecture for NTN
- Affordability and sustainability constraints
- sustainability metrics and target values for carbon foot print and overall energy consumption

NTN Architecture: 3D Network Concept

NTN radio interface: design drivers (1/2)

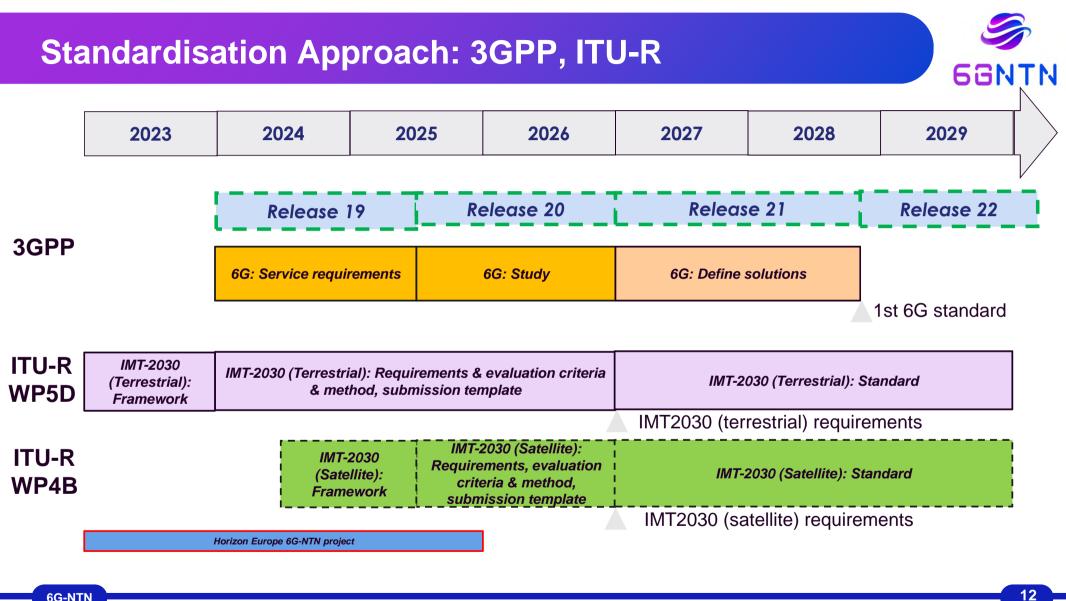
Spectrum efficient and flexible waveform optimized for both terrestrial and non-terrestrial network components

Candidate radio interface features	Rationale		
Multi carrier waveform enhancements	 OFDM evolution offering relaxed synchronization requirements. Supporting UE without GNSS capabilities (also referred as « GNSS free operation ». Mitigating specific satellite constraints: Reduce the Peak-to-Average Power Ratio (PAPR) on the downlink to maximize the spectral efficiency in case of reduced number of channels in a single on board amplifier. 		
Advanced modulation, coding and multiple access schemes	 Minimizing error rate performance under low SNR conditions. Enabling the support high link margin to mitigate challenging radio link conditions (e.g. to overcome building penetration loss). 		
Design flexible UL/DL framing structure	 Adapt the frame structure to satellite Orbit, frequency range etc Reduce the overhead penalty since there are quasi no multi-paths in satellite propagation channel. 		

6G-NTN

NTN radio interface: design drivers (2/2)

Candidate radio interface features	Rationale
Design appropriate robust reference signals for enhanced positioning	 Support reliable (i.e. trusted) network based solution for accurate and fast response Positioning, Navigation and Timing (PNT) service. Potential narrow-band synchronization signals could be also designed, where the PRS resources could be defined over multiple slots.
Joint communication and sensing	 Provide low to medium resolution sensing capabilities with sensing capability directly integrated/embedded into the design of the waveform.
Support of broadcast and multicast	Leverage the large coverage area of satellites
Enablers for Artificial Intelligence driven radio resource control	 Increase the "goodput" of a radio link through dynamic optimisation of the radio interface configuration (e.g. Modulation, coding, power, signal occupancy, interleaving depth, HARQ) according to the radio link conditions
Spectrum sharing between TN and NTN	 Revise the methodology of coexistence study and RF/RRM specification, and potentially consider co- channel spectrum sharing between TN and NTN.
New spectrum	 Some additional MSS allocations may be granted at the WRC-2027 as per agenda items 1.12, 1.13 and 1.14. Moreover, some additional bands such as Q/V bands should be considered for broadband connectivity.
TDD support	 Unpaired spectrum may be allocated to NTN in selected bands, e.g. in order to support TDD operation in some frequency bands for NTN nodes at 800 km altitude and lower.
6G-NTN	© Convright SC NTN 2022-2025


Spectrum Usage

Here under frequency bands that may be considered for respectively 5G and 6G non-terrestrial networks:

Services	NTN in 5G (Currently)	NTN in 6G	
Narrow/Wideband connectivity	FR1: MSS allocations in L & S	FR1: same as 5G NTN and	
to smartphones, vehicle/drone	bands (e.g. see Rel-17 work).	additional Satellite service	
mounted & low cost IoT devices		allocations in bands up to 7.125	
		GHz.	
Broadband connectivity to	Above 10 GHz: FSS and MSS	Above 10 GHz: same as 5G NTN	
vehicle/drone mounted devices	allocations in Ka band (e.g. see	+ Satellite service allocations in Ku	
and to large Aeronautic,	Rel-18 work).	and Q/V bands.	
maritime platforms			

6G-NTN

6G-NTN

POSSIBLE TOPICS FOR DISCUSSION BETWEEN 6G RELATED SNS-JU PROJECTS

- Use cases and families
- Radio interface & Architecture: necessary enablers/enhancements for the various targeted deployment scenarios
- Sustainability metrics and target values for energy consumption and carbon foot print ?

ANNEX

NTN Development/Deployment Wrt Reference Scenarios

Solutions	coni	ow band nectivity ſ devices	Narrow to wideband connectivity to handheld devices	Broadband conn to non-handheld		
Spectrum	< 7 GHz		' GHz	Above 10 GHz		
Service	Up to hundreds of kbps		Up to few Mbps	Up to hundred Mbps		
3GPP radio interface				5G New Radio		
Example of applications			Consumers + Verticals (Automotive, public safety, utilities, agriculture)	Verticals: Telco (e.g. Backhaul), IPTV service providers, Satellite News Gathering, Transport (aeronautical, maritime, railway), public safety,		
Space segment	GSO	NGSO	NGSO	GSO	NGSO	
Timeline indication (NOTE 1)	2023- 2025	2024-2029	2026-2029	2026-2029	2026-2029	
NOTE 1: Sources: 3GPP RP-232732 (source: GSOA)						

6G-NTN

Some References

 « 3GPP Non-Terrestrial Network: A Global Standard for Satellite Communication Systems », Special Issue of the International Journal of Satellite Communications and Networking, Pages: 217-301, Edited by Mohamed El Jaafari and Nicolas Chuberre, published by Wiley, May/June 2023,

https://onlinelibrary.wiley.com/toc/15420981/2023/41/3

• « 5G Non-Terrestrial Networks » by Prof. Alessandro Vanelli-Coralli, Mohamed El Jaafari, Nicolas Chuberre, Gino Masini, Alessandro Guidotti, published by Wiley-IEEE Press, 14th January 2024

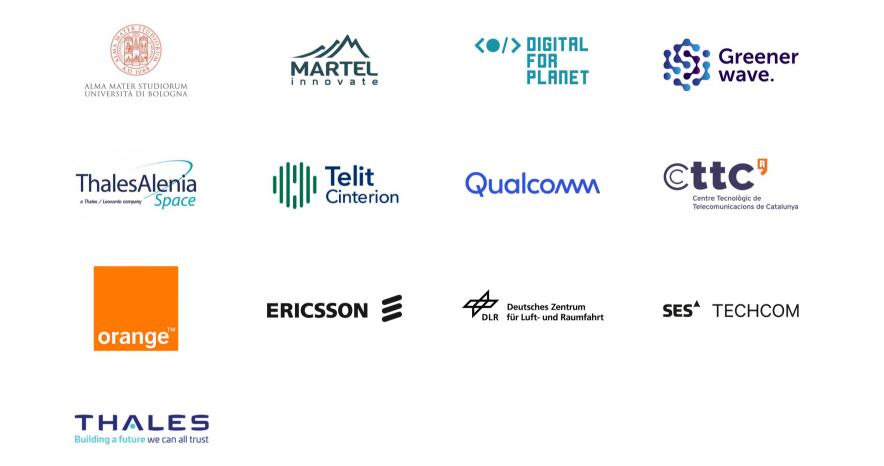
https://www.amazon.co.uk/5G-Non-Terrestrial-Networks-Vanelli-Coralli/dp/1119891159

Horizon Europe R&D « 6G-NTN » project: https://www.6g-ntn.eu

5G Non-Terrestrial Networks

Alessandro Vanelli-Coralli | Nicolas Chuberre Gino Masini | Alessandro Guidotti Mohamed El Jaafari

IEEE PRESS


WILEY

6G-NTN

Orange Restricted

The Consortium

Orange Restricted

6BNTN

GGSNS

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

Swiss Confederation

