

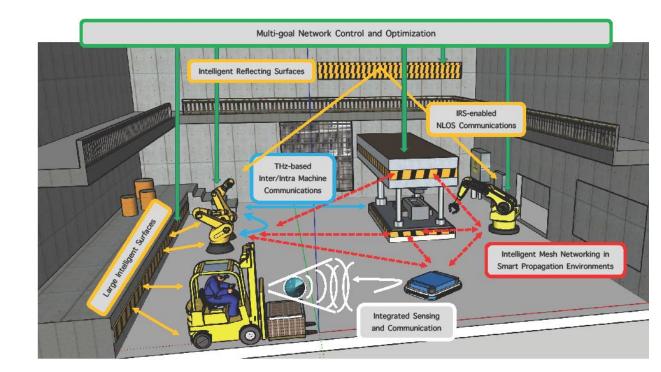
TIMES

THz Industrial Mesh Networks in Smart Sensing and Propagation Environments

Tommaso Zugno Huawei Technologies MRC tommaso.zugno@huawei.com TIMES Work Package 4 leader Hexa-X-II Workshop on 6G January 26th 2024

Project Overview

- Funding framework
 - first call of EU's Smart Networks and Services Joint Undertaking
 - 35 Research and Innovation (R&I) projects selected
 - STREAM B-01-02 on wireless communications and signal processing
- TIMES run-time
 - 1 January 2023 31 December 2025
- Consortium



Project vision and pillars

TIMES long-term vision

"Smart radio ecosystem in complex scenarios offering similar performance as wired networks."

- Pillars
 - Exploiting ultra-wide bandwidth and sensing-friendly characteristics of THz communications.
 - T
- **Deploying intelligent mesh THz networks** in smart propagation environments.
- Enabling high-definition integrated communications and sensing at THz.

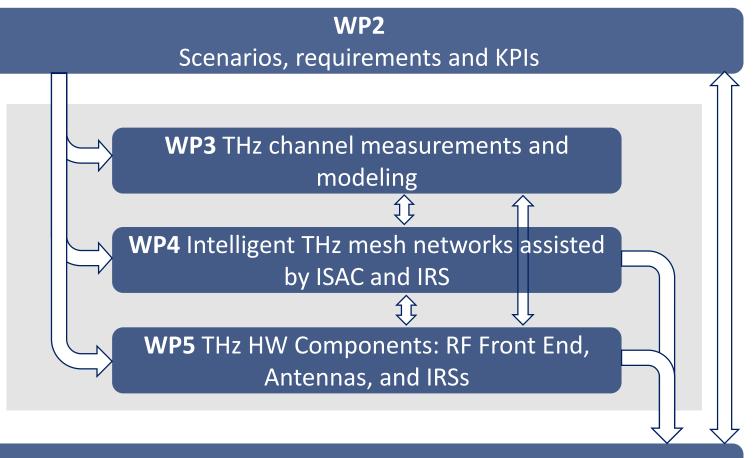
• Verticals: Manufacturing (14.0, 15.0), Healthcare, Automotive

Key objectives

- 1 Definition of **use cases and requirements** for future industrial applications
- 2 Derivation of **new THz channel models** in industrial scenarios
- 3 Design of novel **solutions** at the **PHY and MAC layers**
- 4 Realization of **THz front-ends, antennas, and IRSs**
- 5 Design of a **multi-goal mesh-based RAN** composed of active and passive nodes
- 6 Design of integrated sensing and communications functionalities and waveforms
- 7 Realization and validation of a PoC in real industrial environments

Main Innovations

	Identification of potential use casesDefinition of KPIs
THz communications	 THz channel measurements and modelling LOS MIMO, fast beamforming, electromagnetic signal processing 250-300 GHz higly integrated THz RF front-ends
Intelligent Mesh Networking in Smart Propagation enviroements	 Mesh-based RAN topology with active/passive devices Efficient and reliable transmission over multiple THz links 300 GHz IRS made of metamaterials
Integrated sensing and communications	 Enable see-around-the-corner functionality with IRSs Enhanced localization functionalities through near-field THz propogation conditions
Proof-of-concept	 Integration of THz RF front-ends, antennas, IRSs Multiple THz links between static and mobile devices through direct/reflected paths



Project Implementation

WP6 Proof-of-Concept and Demonstration

WP2 - Scenarios, requirements and key performance indicators

• 6 application areas and 15 use cases

	Predictive maintenance		Mobile robot management	Class	Use case
₩				А	Automated and guided vehicles mobile Online cooperative 3D map build
				В	Predictive Maintenance Fast process monitoring Process automation
	Flexible and modular factory AR/VR and digital twin	\$ <u>7</u>	Highly dynamic control	C	Virtual Simulation and Commissi Ultimate immersive cloud VR/AR Virtual PLC
				D	Control-to-control communication
			Seamless field bus substitution	E	Mobile control panels with safet functions Real-time cooperative safety pro
				F	Flexible and modular assembly a Collaborative robots in groups Variable message reliability
					Latency: 조조조Not-RT

Class	Use case	Latency	Data rate	Timeline
A	Automated and guided vehicles and mobile	222	* *	⇔⇔
	Online cooperative 3D map building	22	***	⇔⇔
	Predictive Maintenance	22	* * *	$\Rightarrow \Rightarrow$
В	Fast process monitoring	Z	****	⇒/⇔⇒
	Process automation	222	**	⇒/⇔⇒
С	Virtual Simulation and Commissioning	22	**	\Rightarrow
	Ultimate immersive cloud VR/AR	222	****	\Rightarrow
D	Virtual PLC	2	****	$\Rightarrow \Rightarrow \Rightarrow \Rightarrow$
	Control-to-control communication	22	***	$\Rightarrow \Rightarrow \Rightarrow \Rightarrow$
	Motion Control	8/88	***	$\Rightarrow \Rightarrow \Rightarrow \Rightarrow$
E	Mobile control panels with safety functions	222	**	
	Real-time cooperative safety protection	222	**	$\Rightarrow \Rightarrow$
F	Flexible and modular assembly area	22	**	
	Collaborative robots in groups	22	**	
	Variable message reliability	222	*	\Rightarrow

Latency: ًًً 2 2 Not-RT 2 2 Near-RT 2 RT Data rate: *Low **Medium ***High ****Ultra-high Timeline: ⇔Short ⇔⇔Mid ⇔⇔⇔Long-term

WP3 - THz channel measurements and modeling

Channel measurements in different industrial scenarios

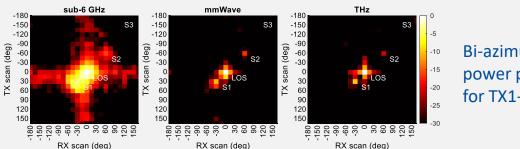
- Intra and inter machine links •
- Mono and bi-static ISAC
- Blockage

Big workspace

- **Directional measurements** •
- Aligned and mismatched • configurations

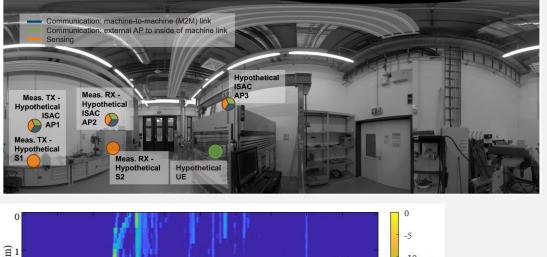
Robotic lab

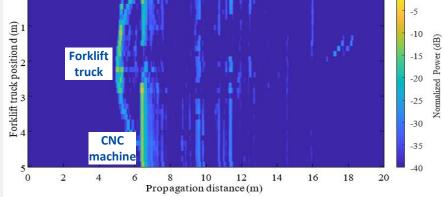
- Links between two robotic arms
- Static and moving blockers



Initial measurements results

Pathloss and large scale parameters in LOS and NLOS



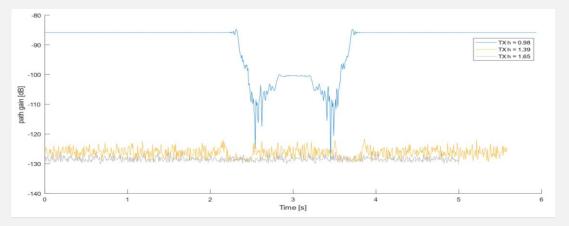

Measurements in multiple positions at 3 frequency bands

Bi-azimuth power profile for TX1-RX1 link

Detecting a forklift truck and CNC machine

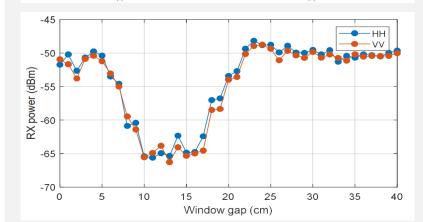
CIR for different positions of forklift

101096307 - TIMES



Initial measurements results

Measurements with blocking obstacle


Wireless link between robotic arms with moving obstacle in the middle

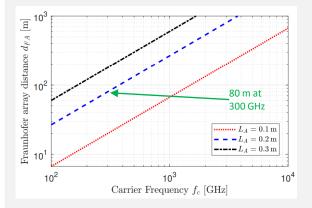
Measurements with blocking window

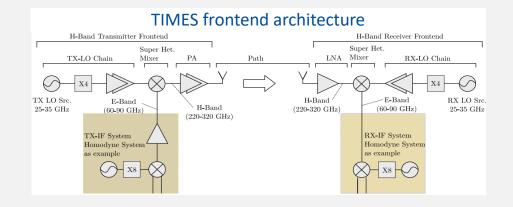
Different opening gaps of protective window

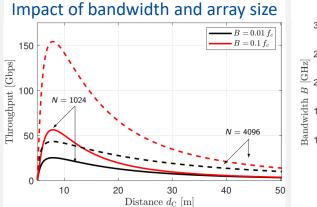
RX power for different opening gaps of window

WP4 - Intelligent THz mesh networks assisted by ISAC and IRSs

- PHY layer enhancements for THz links
- Integration of sensing and communication functionalities
- Enable THz communications in smart propagation environments
- Network design and optimization for intelligent multi-goal mesh networks

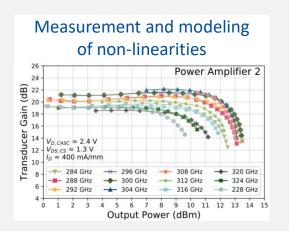


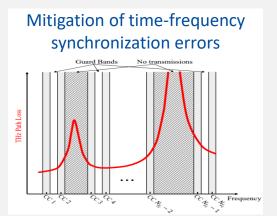

PHY layer enhancements for THz links


Exploit THz near-field propagation through LOS MIMO

At THz frequencies the typical communication ranges in indoor environments are entirely in the near-field region

Measurement, modeling, mitigation of RF impairments

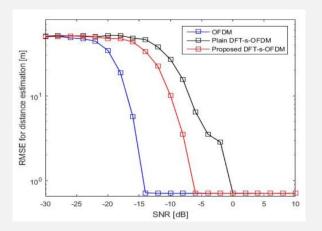




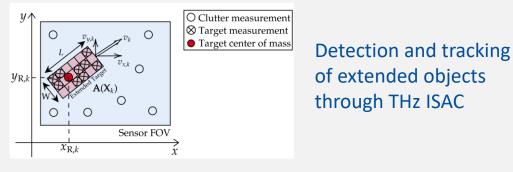
Impact of TX power 30 160 140 25 [zH5] 20 120 -100 0 Bandwidth . 0 51 80 60 40 20 0 10 15 20 25 30

Transmit Power P [dBm]

5



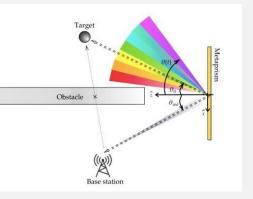
Integration of sensing and communication functionalities

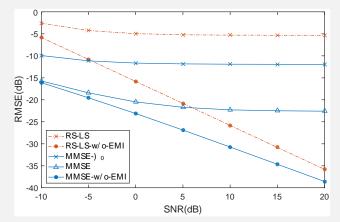

Tx Data Com channe DAC Tx/RF Tx digital uni RX/RF ADC source Communication Tx **RX/digital** Rx data unit Sen. channel Sensing Rx/RF Rx digital uni ADC estimator Communication Rx Sensing Rx

New ISAC waveform design based on DFT-S-OFDM

The proposed design offers high estimation accuracy and low PAPR

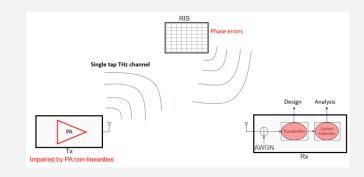
Enable sensing-assisted THz communications

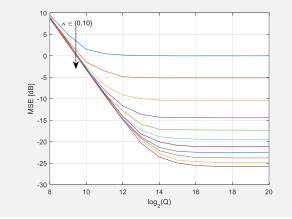




THz communication and sensing in smart propagation environments

High-rank NLOS communication and sensing using IRS

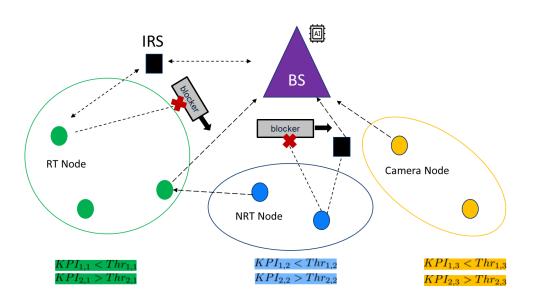

Communication and sensing schemes exploiting frequencyselective IRS concept

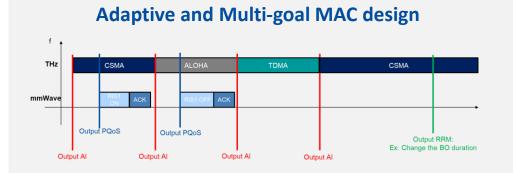


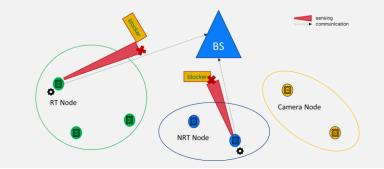
Channel estimation of IRS-aided communications in presence of interference

Characterization and mitigation of RF impairments on IRS-aided links

Impact of phase errors on IRS elements for optimal beam design

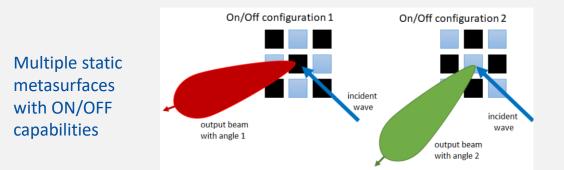




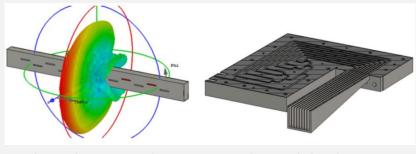

Design and optimization of intelligent multi-goal mesh networks

• **Goal:** Al-aided network intelligence able to manage a dynamic environment with diverse communication and sensing constraints

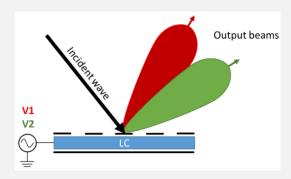
Distributed and cooperative blockage prediction



WP5 - THz Hardware Components: RF Front End, Antennas, and IRSs


Design and fabrication of 300 GHz THz frontends

Design and fabrication of IRSs at 300 GHz


Design and fabrication of THz antennas

Slotted waveguide

Phase-delay line

Reconfigurable IRS based on liquid crystal

101096307 - TIMES

WP6 - Proof of concept and demonstration in real scenarios

- Planned demonstrations
 - THz link with high-gain antenna and static IRS
 - THz link with beam-steerable antennas and reconfigurable IRS
- Two industrial scenarios

BI-REX Pilot Line

Example of a digital factory of the future designed to support industrial manufacturers in digital transformation processes and technological innovation

AETNA TechLab

The most advanced laboratory in the packaging field with the aim of a continuous process and product development

Public deliverables

- WP2
 - D2.1 Definition of use cases, KPIs, and scenarios for channel measurements
 - D2.2 Definition of scenarios for software simulation
 - D2.3 Definition of scenarios and KPI for hardware demonstration and PoC

Available at <u>times6g.eu/deliverables</u>

• WP3

D3.1 - Initial channel measurements in industrial environments at sub-THz frequencies

• WP4

• D4.1 - Intermediate report on PHY layer enhancements for THz links supporting sensing and communication functionalities

Standardization and dissemination

- ETSI ISG THz
 - 5 founding members of ISG THz
 - TUBS (chair), HUAWEI (vice-chair), TELENOR (rapporteur), CNRS, FRAUNHOFER
 - Joint TIMES contributions submitted on THz use cases
 - 4 SNS TIMES use cases included in final ISG THz Group Report
 - Industrial THz channel measurements contributed
- COST INTERACT
 - Joint TDs on channel measurements and modelling
- Dissemination activities (joint TIMES/6G-SHINE/TERRAMETA)
 - Organized successful special session at IEEE CSCN 2023
 - Joint TIMES/6G-SHINE/TERRAMETA workshop (Feb. '24)
 - Joint IEEE ICC 2024 industrial session accepted (Jun. '24)

Follow us online

